
Source Code Management
with git

Genecats Meeting
9 June 2010

Ann Zweig & Galt Barber

Why switch?

● Source tree too large for CVS
● We need new features:

– Faster checkout
– File & directory renaming
– Easier branching
– Easier merging

Why git?

● We considered:
– svn
– mercurial
– bazzar
– git

● svn is very CVS-like
● The other three offer branch-based de-

velopment, but git is the fastest
● We will use branches to manage release

of trackDb and static docs

The Logistics

● Friday, June 11 @ 5pm
– freeze CVS repository

● June 12-13:
– Galt will convert code base to git

● Monday, June 14
– git-only access to code

References

● Genomewiki page
– http://genomewiki.cse.ucsc.edu/index.php/Getting_Started_With_Git

● Other web resources
– http://git-scm.com
– http://wiki.freegeek.org/index.php/Git_for_dummies

● Reference books
– Version Control with Git - Jon Loeliger (O'Reilly)
– Pragmatic Version Control Using Git - Travis Swicegood

(Pragmatic Bookshelf)

http://git-scm.com/
http://wiki.freegeek.org/index.php/Git_for_dummies

Mirror Sites

● Encouraged to switch to git
● Providing a CVS-server to our git repos-

itory for a few months
● Providing read-only public access via

– Git-daemon
git clone \
git://genome-source.cse.ucsc.edu/kent.git kent

– http for those with strict firewalls
git clone \
http://genome-source.cse.ucsc.edu/kent.git kent
● Chin will build new mirror using git code

Questions?

● Questions about the logistics?

How to set up your own
repository

● Clone from the central repository
ssh hgwdev
cd $HOME
mv kent kent-cvs
git clone
 $USER@hgwdev.cse.ucsc.edu:
 /data/git/kent.git kent

● This URL will work anywhere on the
planet

mailto:$USER@hgwdev.cse.ucsc.edu

How it's different from CVS

● Each user has own copy of the
 repository so all the history is available

● Work and commit to your local repo
● Stage related changes in a single commit
● Easier branching and merging
● Push to central repository
● Often need to first pull from

 the central repo to fetch and merge
 changes from others

Example:
a new conversion utility

cd $HOME/kent/src/hg/utils
mkdir fastaToMoney
cd fastaToMoney
#Create .h, .c, makefile with vi
git diff
git add fastaToMoney.h
git add fastaToMoney.c
git add makefile
git status; git pull; git push

Working on a new feature
with a local branch

cd $HOME/kent
git branch #show which is active
git checkout -b blueMusic
edit several files
git add inc/common.h
git add lib/common.c
git add lib/blueMusic.c
git commit -m 'good start on
blueMusic'

Working on a new feature
with a local branch (cont)

For branches that take a while to finish
continue merging in others changes
and testing as needed.
git checkout master
git pull # get other peoples changes
git checkout blueMusic
git diff master
git merge master
repeat: work, test, merge

Working on a new feature
with a local branch (cont)

Ready to push final changes
git checkout master
git diff blueMusic
git merge blueMusic
git pull
git push
When we are SURE we do not need it
git -d blueMusic

Cool Git Facts

● Content-addressable storage
● SHA1-hash ids are globally unique

fc6c45e91d08a5f31899db872c07bc88a53299a0

● Git repo is a DAG of commits
● Git stores files, not diffs
● Git gc/pack compresses history
● A merge creates a commit with two or

more parents
● Besides central-repo model, git supports

hierarchical, peer-to-peer, etc.

Thanks to the git team

● Galt Barber
● Mark Diekhans
● Pauline Fujita
● Donna Karolchick
● Brian Raney
● Vanessa Swing
● Ann Zweig

	Title
	Long-term Goal
	Customer Wishes
	Fulfilling Customer Needs
	Cost Analysis
	Strengths and Advantages
	Slide 7
	Next Steps of Action
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

