Dating Doppel (PRND): Difference between revisions
Tomemerald (talk | contribs) No edit summary |
Tomemerald (talk | contribs) No edit summary |
||
Line 326: | Line 326: | ||
</pre> | </pre> | ||
[[Category: | <h3>Dating doppel: missing from bird and fish genomes -- but present in marsupial, lizard and frog</h3> | ||
The prion and doppel genes represent a local tandem duplication that has descended intact in most lineages with the two genes remaining adjacent and unpseudogenized (though both have spawned additional retroposed pseudogenes). When did this gene duplication take place, did it correlate with or facilitate an evolutionary advancement, and how have the (largely unknown) normal functions of the two genes since diverged? Retention of the second copy is somewhat puzzling in view of viability of PRNP knockouts, indeed [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15161660">double knockouts]. | |||
The weak homology between prion and doppel, below 30% identity even for the conserved core, suggests either a quite ancient duplication (lamprey era?) followed by average divergence, or alternatively, a fairly recent duplication (tetrapod era?) followed by rapid evolution on the doppel side as it acquired a auxillary function (neofunctionalized). These possibilities can be distinguished by looking at earlier diverging species that put a date on the duplication event. | |||
If the duplication is old, then doppel should be found in various draft vertebrate genomes now available -- 34 mammals (see [[Genome completion status]]), chicken, lizard, frog, zebrafish, tetraodon, fugu, medaka, and stickleback. If gene order and orientation (synteny) are conserved, doppel will lie between PRNP and RASSF2, allowing highly diverged forms to be recognized that might give unconvincing blast matches. Of course synteny can be supplemented by conservation of internal signatures such as signal peptide, post-translationally modified arginine, disulfides, glycosylation sites, alpha helices, short beta sheet (YMLG in human), and GPI attachment. Repeat structure is trickier to use because it has been lost in all doppels and shifts from biphasic hexapeptide in frog, turtles, birds, and lizards to decapeptide (platypus), nonapeptide (marsupial), to octapeptide (placentals). | |||
The brushtail opossum (Trichosurus vulpecular) prion gene sequence was determined in 1995. It conserves structural elements overall but presents various anomalies such as nonapeptide repeats. Its sequence can be used as query at the [http://genome.cse.ucsc.edu/cgi-bin/hgGateway?hgsid=99826923&clade=vertebrate&org=Opossum&db=0 UCSC genome browser] to find a complete second marsupial PRNP sequence from Monodelphis domestica. The two proteins have 86% sequence identity (not including repeat region), not necessarily indicating faster divergence since marsupials have had longer to diverge than placental mammals. The two 'opossums' here are not closely related, Didelphimorphia vs Diprotodontia. The second marsupial genome (Macropus eugenii) has been released unassembled to NCBI trace archives; full length PRNP and PRND sequences are readily covered there by trace blastn. | |||
Monodelphis domestica PRND is located next to PRNP in the same orientation in a gapless region of the assembly. Within placental mammals, doppel homology is about 85% identity but this drops off to 46% relative to marsupial, indicating a relative fast-evolving protein in this lineage (but not yet a pseudogene). Indeed, with nearly PRNP gene sequences available in nearly a hundred species of placentals and the mammalian phylogenetic tree topology [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=17322288,17975064 finally determined], clade-specific rate variations could be pursued in unusual detail, with a possible correlation with rates of doppel evolution. | |||
Monotreme represents a still earlier divergence: PRNP and PRND can be recovered from the newly released assembly of the platypus genome, Ornithorhynchus anatinus. This species, which diverged after birds but before the Metatherian/Eutherian split, has a decapeptide x 4 repeat (rather than a bird- or turtle-like hexapeptide. However its sequence, PQGGGASWGH, is unusual for its glutamine in second position and terminal histidine (reverse of usual mammal residues). In other respects it is conventional. | |||
The chicken genome is gap-free in this area and retains mammalian gene order and orientation (PRNP+, RASSF2-, and SCL23A-). However, no dopple gene occurs in chicken in the expected position. If prion gene duplication occurred prior to chicken divergence, then doppel decayed to an unrecognizable pseudogene, translocated to an unsequenced region, or has been deleted. No evidence for a decayed pseudogene is observed using a high-sensitivity blast of reconstructed ancestral doppel. The other bird genome underway, Taeniopygia guttata (finch), also lacks PRND. | |||
Very recently, a lizard genome became available, Anolis carolinensis. Using specialized methods, a full length PRND gene has be located in expected syntenic position and validated by retained internal signatures despite its very weak blast score. Similarly in the diploid frog, Xenopus tropicalis, an unmistakable frog doppel gene occurs at expected position and orientation. These results have a simple parsimonious explanation: the PRND duplication predated amphibian divergence, followed by a lineage-specific deletion in the bird clade. Crocodile sequencing could refine the date of this event. | |||
In support, lizard and frog doppel queries retrieve solely mammalian and turtle PRND genes when back-blasted against the GenBank non-redundant nucleotide division. This argues against the idea of multiple independent duplications of the prion gene in lizard and frog distinct from a later lineage-specific duplication in mammals (with birds then never having a PRND to delete). | |||
Note the more familiar tetraploid laboratory frog, Xenopus laevis, has two actively transcribed PRNP genes that differ slightly in the repeat-like region as well at a few individual amino acids. Their sequences are given below. No sign of doppel can be found in Xenopus laevis cDNA (unsurprisingly since doppel transcription is rare); no genome project is underway. There may be two doppels in this species, depending on the relative timing of PRNP duplication and the tetraploidization event and selective pressure to maintain two copies. | |||
The prion gene in teleost fish has radically diverged from its mammalian counterpart especially in the repeat region but remains recognizable via various conserved anchor features, residual synteny, and weak homology. Fugu has a second PRNP gene on a different chromosome (resulting from the whole genome duplication in Teleostei) plus an apparent novel tandem duplication that resembles PRNP rather than PRND. Coelocanth genome has been proposed but not begun -- that could further refine the timing of PRND duplication. As it stands, that event occurred after teleost fish divergence but before that of amphibians, about 400 million years ago. The prion gene clearly represents the ancestral form and presumably function, ie, a doppel-like ancestor did not duplicate to a second gene that become PRNP. No counterpart of PRNP can be located in the initial release of the chondrichthyian genome, Callorhynchus milii, but that will be finished to higher coverage in a few months. | |||
Doppels are evolving noticeably faster than prions but have not become pseudogenes in any species investigated to date. (Note very recent pseudogenes that have not yet acquired internal stop codons or loss of deeply invariant residues are difficult to detect.) It must be remembered that PRNP's globular region lies within the most slowly evolving quartile of mammalian genes. As a representative example, human/dog proteins have 78% identity for PRND but 87% for PRNP. A reconstructed ancestral mammal sequence for PRND shows no sign whatsoever of converging to a PRNP-like sequence, percent identity ancester-to-ancestor remains in the mid-20's. Since this uses up 100 million years of the 400 available, doppel evolved more drastically at an earlier time, perhaps soon after the duplication event. | |||
To further investigate the co-evolution of PRNP and PRND, it is imperative to first collect gene sequences from a phylogenetically representative sample of species. PRNP tends to be over-sampled within Artiodactylia, indeed Bovidae. Doppel remains very poorly represented at dbEST even within much-studied mammals and enriched libraries, even in testis, a tissue where it is transcribed. The most economical explanation of the data is that doppel has a narrow function with limited and specialized expression in uncommon cell types, yet one important enough for gene retention. | |||
However a respectable number of tetrapod doppel sequences have accumulated. In addition to genome projects, van Rheede and coworkers sequenced nine doppels from important early diverging clades of placental mammals. PRND from the chimpanzee genome has special interest for evaluating known human doppel polymorphisms to determine "wildtype" human. Macaque doppel can also the 2 amino acid deletion seen in human at position 122-123, showing this event predated old world monkey divergence. In fact that event can be precisely timed to the stem lying between tarsier and new world monkey divergence and shown non-homplasic using various genome projects underway: | |||
<pre> | |||
PRND_hsa ANQGEFQ--KPDNKLHQQVLWRLVQELCS Homo sapiens (human) | |||
PRND_ptr ANQGEFQ--KPDNKLHQQVLWRLVRELCS Pan troglodytes (chimp) | |||
PRND_ggo ANQGEFH--KPDNKLHQQVLWRLVRELCS Gorilla gorilla (gorilla) | |||
PRND_ppy ANQGEFQ--KPDNKLHQQVLWRLVQELCS Pongo pygmaeus (orang_sumatran) | |||
PRND_nle ANQGEFQ--KPDNKLHQRVLWRLVRELCS Nomascus leucogenys (gibbon) | |||
PRND_mml ENQGEFQ--KPDNKLHQRVLWRLVQELCS Macaca mulatta (rhesus) | |||
PRND_pha ANQGEFQ--KPDNKLHQRVLWRLVQELCS Papio hamadryas (baboon) | |||
PRND_cja ANQAEFQ--KPDNKLHQRVLWRLVQELCS Callithrix jacchus (marmoset_nwm) | |||
PRND_tsy ANAAERPREARDDPLHQRVLGRLVRELCS Tarsius syrichta (tarsier) | |||
PRND_mmr ANQAEFAREKQD-KLHERILWRLTRELCS Microcebus murinus (mouse_lemur) | |||
PRND_tbe ANQAEFSKEKQDNKLYQRVLWRLIKELCS Tupaia belangeri (tree_shrew) | |||
PRND_ocu ANQGEFSREKQDNKLHQRVLWRLIKELCS Oryctolagus cuniculus (rabbit) | |||
PRND_opr ANQGEFSREKQ-NKLHQRVLWRLIKELCS Ochotona princeps (pika) | |||
PRND_dor ANQAEFAREMQD-KFYQRVLWRLTKELCA Dipodomys ordii (kangaroo_rat) | |||
PRND_str ANQAEFSREKQDNKLHQRVLWRLIKELCS Spermophilus tridecemlineatus (ground_squirrel) | |||
PRND_rno ANQAEFSREKQDSKLHQRVLWRLIKEICS Rattus norvegicus (rat) | |||
PRND_mmu ANQAEFSREKQDSKLHQRVLWRLIKEICS Mus musculus (mouse) | |||
PRND_cpo ANQAEFSREKQDNKLHQRILWRLIKELCS Cavia porcellus (guinea_pig) | |||
PRND_sar ANQEELSREKHD-KLYQRVLWRLVRELCS Sorex araneus (shrew) | |||
PRND_eeu ANQEELSREKHD-KLYQRVLWRLVRELCS Erinaceus europaeus (hedgehog) | |||
PRND_cfa ANQEELSREKQDNKLHQRVLWRLIRELCS Canis familiaris (dog) | |||
PRND_fca ANQEELSREKQDDKLYQRVLWRLNR-ECS Felis catus (cat) | |||
PRND_tte ENQEELSREKQDDKLHQRILWRLIRELCS Tapirus terrestris (tapir) | |||
PRND_eca ANQEELSQEKQDDKLYQRILWRLISELCS Equus caballus (horse) | |||
PRND_mlu ANQEELSQERPDNRLHRRILWRLVRELCS Myotis lucifugus (microbat) | |||
PRND_csp VNQEELSQEKQDKLLHQRILWQLIRELCS Cynopterus sphinx (bat) | |||
PRND_oar ANQEELSREKQDNKLYQRVLWQLIRELCS Ovis aries (sheep) | |||
PRND_chi ANQEELSREKQDNKLYQRVLWQLIRELCS Capra hircus (goat) | |||
PRND_bta ANQEELSREKQDNKLYQRVLWQLIRELCS Bos taurus (cow) | |||
PRND_ttr VNQEELSREKQDNSLYQRVLWQLIRELCS Tursiops truncatus (dolphin) | |||
PRND_ssc ANQEE-SHEKPDNKLYQRVLWRLIRELCS Sus scrofa (pig) | |||
PRND_pcw VNQEELSLEKPDNKLYQRVLWRLIRELCS Physeter catodon (whale) | |||
PRND_ban ANQEEFSREKQDNKLHQRVLWRLIRELCS Boreoeuthere ancestralis (boreoeuthere) | |||
PRND_dno ANQAELAHERQD-TLHGRVLGRLIRELCA Dasypus novemcinctus (armadillo) | |||
PRND_cho ANQAEFSREKHD-KLHQRVLWRLIRELCS Choloepus hoffmanni (sloth) | |||
PRND_pcp VNQEEFSREKQDNKLYQRILWRLIRELCS Procavia capensis (hyrax) | |||
PRND_ete ANQAEFSAPQQDSRLHQRVLWRLIRELCS Echinops telfairi (tenrec) | |||
PRND_ema ANQEEFSREKQDNKVYQRILWRLIRELCS Elephas maximus (elephant) | |||
PRND_laf ANQEEFSR-KQDNKVYQRILWRLIRELCS Loxodonta africana (elephant) | |||
PRND_tma ANQEEFSREKQDNKLYQRILWRLIRELCS Trichechus manatus (manatee) | |||
PRND_mdo INKLEPLEEQNISDIYSRILEQLIKELCA Monodelphis domestica (opossum) | |||
PRND_meu VNNLETLEEKNASDIHSRVLEQLIKELCA Macropus eugenii (wallaby) | |||
PRND_oan ANRGELTAGGNASDVHVRVLLRLVEELCA Ornithorhynchus anatinus (platypus) | |||
PRND_aca SNKLNLSKGKDLSNTKERVMWVLIHHLCA Anolis carolinensis (lizard) | |||
PRND_xtr RNKVWISQLEDDEEGDIYMSVATQVLQFLCM Xenopus tropicalis (frog) | |||
** * . * *. ::*::**:* :* .: | |||
</pre> | |||
Below 45 PRND doppel sequences from land vertebrates are provided. Most are complete and reliable, but others are fragmentary and no better than the ongoing genome project from which they were extracted (initially low coverage, perhaps a single applicable trace). The phylogenetic distribution is approximately half as extensive as for PRNP. Almost all species having an available PRND would also have an available PRNP. It would be very easy to extend PRND coverage since primer design for PCR presents no issues. All sequences consist of a single coding intron. The only rare genomic event for PRND of any phylogenetic depth is the indel shown above. | |||
<pre> | |||
11 primates (Euarchonta) | |||
7 glires (rodents and rabbits) | |||
14 laurasiatheres | |||
1 ancestral boreoeuthere | |||
2 xenarthrans | |||
5 aftrotheres | |||
2 marsupial | |||
1 platypus | |||
0 bird | |||
1 lizard | |||
1 amphibian | |||
</pre> | |||
<pre> | |||
>PRND_hsa human full length | |||
MRKHLSWWWLATVCMLLFSHLSAVQTRGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGRKLDIDFGAEGNRYY | |||
EANYWQFPDGIHYNGCSEANVTKEAFVTGCINATQAANQGEFQKPDNKLHQQVLWRLVQELCSLKHCEFWLERGAGLRVTMHQPVLLCLLALIWLTVK* | |||
>PRND_ptr Pan chimpanzee full length | |||
MRKHLSWWWLATVCMLLFSHLSAVQARGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGRKLDIDFGAEGNRYY | |||
EANYWQFPDGIHYNGCSEANVTKEVFVTGCIHATQAANQGEF | |||
QKPDNKLHQQVLWRLVRELCSLKHCEFWLERGAGLRVTMHQPVLLCLLAFIWLMVK* | |||
>PRND_ggo gorilla | |||
MRKHLSWWWLATVCMLFFSHLSAVQARGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGRKLDIDFGAEGNRYY | |||
EANYWQFPDGIHYNGCSEANVTKEVFVTGCINATQAANQGEF | |||
HKPDNKLHQQVLWRLVRELCSLKHCEWLERSAGLRVTMHQPVLLCLLAFIWLMMK* | |||
>PRND_ppy Pongo pygmaeus orangutan shares 2 bp deletion unique to primates. | |||
MKNHLSWWLATVCMLLFSHLSAVQARGIKHRIKWNRKALPSTAQITEAPGAENRPGALSkQGR | |||
QLDIDFGTEGNRYYEANYWQFPDGIHYDGCSEANVTKEVFVTGCINATQAANQGEFQ | |||
KPDNKLHQQVLWRLVQELCSLKHCEFWLERGAGLRVTMHQPVLLCLLAFIWLMVK* | |||
>PRND_nle Nomascus leucogenys gibbon | |||
MRKHLSWWWLATVCMLLFSHLSAVQARGIKHRIKWNRKALPSTAQITEAQVAENRPGGFIKQGRKLDIDFGAEGNRYY | |||
EANYWQFPDGIHYDGCSEANVTKEVFV | |||
TGCINATQAANQGEFQKPDNKLHQRVLWRLVRELCSLKRCEFWLERGAGLRVTMHQPVLLCLLAFIWLMVK* | |||
>PRND_pha Papio hamadryas (baboon) | |||
WLSRLHAAPQ HLSLVVQARGIKHRIKWNRKALPSTAQITEAQVAENPPGSFIKQGRKLNIDFGAEGNRYY | |||
EANYWQFPDGIHYDGCSEANVTKEVFVTGC | |||
INATQAANQGEFQKPDNKLHQRVLWRLVQELCSLKRCEFWLEGGAGLRVTMHQPVLLCLPAFVWLMVK* | |||
>PRND_mml Macaca mulata full length from trace archives | |||
MRQHLSRWWLATVCMLLLSHLSVVQARGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGR | |||
KLNIDFGAEGNRYYEANYWQFPDGIHYDGCSEANVTKEVFVTGCINATQAENQGEFQK | |||
PDNKLHQRVLWRLVQELCSLKRCEFWLERGAGLRVTMHQPVLLCLPAFVWLMV* | |||
>PRND_cja Callithrix jacchus 1st new world monkey 89% | |||
MRKHLSGWWLATVCMLLFSHLSAVQARGIKHRIKWNRKALPSAAQITEAQVAENRPGTFIKQGRKLDINFGAEGNRYY | |||
EANYWQLPDGIHYDGCSETNVTKEVFVTGCINATQAANQAEFQKPDNKLHQRVLWRLVQELCSLKRCEFWLERGAGFRVATHQPLLLCLLAFIWLMAK* | |||
>PRND_tsy Tarsius syrichta tarsier | |||
MRKPLGGWRLAVVCVLLLGLLSAARARGIKHRFKWNRKASPSAARVTEARVAESRPGAFIRRGRKLDIDFGAEGNKYY | |||
EANYWQFPDGIHYDGCSKANVTKELLVAGCINATHAANAAERPREARDDPLHQRVLGRLVRELCSAKHCDFWPERAAAPGTARARPGALLLVSRL | |||
>PRND_mmr Microcebus murinus | |||
GNRYYEANYWQFPDGIHYDGCSDANVTKEVFVASCINATVAANQAEFAREKQDKLHERILWRLTRELCSVKRCEFWLERGAGLRVAEDCPTILSLLLLLWLLLR* | |||
>PRND_tbe Tupaia belangeri tree shrew 6.7 m tr frag | |||
RALPSTAHITEARVAENRPGAFIRQGRKLDIDFGVEGNRYYEANYWQFPDGIHYDGCSEVNVTKEMFITSCINATQA | |||
ANQAEFSKEKQDNKLYQRVLWRLIKELCSIKHCDFWLERGAGLRVTMHLPVMLCLLVFVWFVVK* | |||
>PRND_mmu Mus musculus mouse full length | |||
MKNRLGTWWVAILCMLLASHLSTVKARGIKHRFKWNRKVLPSSGGQITEARVAENRPGAF | |||
IKQGRKLDIDFGAEGNRYYAANYWQFPDGIYYEGCSEANVTKEMLVTSCVNATQAANQAE | |||
FSREKQDSKLHQRVLWRLIKEICSAKHCDFWLERGAALRVAVDQPAMVCLLGFVWFIVK* | |||
>PRND_rno Rattus norvegicus rat full length | |||
MKNRVGTWGLAILCLLLASHLSTVKARGIKHRFKWNRKVLPSSGQITEAQV | |||
AENRPGAFIKQGRKLDIDFGAEGNKYYAANYWQFPDGIYYEGCSEANVTKEVLVTRCVNA | |||
TQAANQAEFSREKQDSKLHQRVLWRLIKEICSTKHCDFWLERGAALRITVDQQAMVCLLGFIWFIVK* | |||
>PRND_cpo Cavia porcellus (guinea pig) fragment AY130773 N-extended at traces 7,499,469 seq | |||
MKTSLCVWALVCVLLQCHFSSVAARGIKHRIRWGRKPTPSPSQVTEARVAMTRPGAFIKEGHKLNIDFGAEGNRYYETNYWQFPDGIHYNGCSDT | |||
NVTKEVLVTSCINATQAANQAEFSREKQDNKLHQRILWRLIKELCSA | |||
>PRND_dor Dipodomys ordii pseudogene | |||
ITEARYRENAQGPSSIKP--QADIDF--ERAQ*YEA*YWQFADGINYEGCSRRHVTKQMF | |||
VSRCINVTQAANQAEFAREMQD-KFYQRVLWRLTKELCAVKQCDFWLERGEGCPVAIVNR | |||
PAMLGLLLCMWFIL | |||
>PRND_str Spermophilus tridecemlineatus ground squirrel complete tr | |||
MKKHLGTWGLAVVCVLLSTHLSAIKARGIKHRIKWNRKSVPSTVQITEAQVAQNPPGAF | |||
IKQGRKLHIDFGAEGNKYYEANYWQFPDGIYYDGCSEANVTKEVFIAKCINATQAANQAE | |||
FSREKQDNKLHQRVLWRLIKELCSVKHCDFWLEGGAGFQLSVDQPVMLCLLVFIWLMVK* | |||
>PRND_ocu Oryctolagus cuniculus rabbit revised complete from traces 8,968,713 sequences 75% | |||
MRKHLGAWGLAIVCVLLFSHLPPAKARGIKHRIKWNRKALPSTAQITEAHVAENRPGTFI | |||
RQGRKLNIDFGPEGNKYYEANYWQFPDGVHYDGCSEGNVTKEAFVAKCVNATQAANQGE | |||
FSREKQDNKLHQRVLWRLIKELCSIKHCDFWLERGAGVQVGGEQPLVLGLLLCTWLLVK* | |||
>PRND_opr Ochotona princeps pika complete | |||
MRKHLGGWGLAIVCVLLFSLLPTVKARGIKHRIKWNRKALPSTAQITEARVAENRPGTFIRQGQKLSIDFGPEGNKYY | |||
EANYWQFPDGIHYDGCSEGNVTKEVFVAKCINATQAANQGEFSREKQNKLHQRVLWRLIKELCSIKHCDFWLERGAGFPVTVGQPMVVLCLLIFTWVLVK* | |||
>PRND_cfa Canis familiaris dog full length | |||
MRKHLGGCWLAIVCVLLLSQLSAVEARGIKHRIKWNRKALPGTSQVTEARSAEIRPGAFI | |||
RQGRKLDIDLGPEGNRYYEANYWQFPDGIHYNGCSEANVTKEKFVTGCINATQVANQEEL | |||
SREKQDNKLHQRVLWRLIRELCSVKRCDFWLERGAGPRVAGAQPVLLCLLAFIWFIVK* | |||
>PRND_fca Felis catus cat improved fragment 8,248,053 traces now 9.2 | |||
MRKHLGGCWLAIVCVLLFSQLSAVKARGIKHRIKWNRKTLPSISQVTEAHTAEIRPGAFIRQGRKLDIDLG | |||
AEGNRYYEANYWQFPDGIHYNGCSEANVTKEKFVTSCINATQVANQEELSREKQDhKLYQRVLWRLNREALLWSAHGNFGRERG | |||
>PRND_eca Equus caballus perissodactyl | |||
MRKHLGGCCLAIVCVLLFSQLPVVLSRGTKHRIKWNRKALPSTAKVTEARVEEIRPGAF | |||
IRQGRKLNINFGAEGNRYYEANYWQFPDEIHYNGCSEANVTKEKFVISCINATQEANQEE | |||
LSQEKQDDKLYQRILWRLISELCSVKHCDFGLESGTGLRVTMDQPVLLCLLVFIWFIVK* | |||
>PRND_tte Tapirus terrestris (Brazilian tapir) perissodactyl fragment | |||
KALPSTSKVTEAHTAEIRPGAFIRQGRKLNIDFGAEGNRYYEANYWQFPDEIHYNGCSEA | |||
NVTKEKFVISCINATQAENQEELSREKQDDKLHQRILWRLIRELCSV | |||
>PRND_mlu Myotis lucifugus traces ti|983665423 complete | |||
MRKQLGGCCLAIVCVLLFSQLAAVQARGIKHRIKWNRKGAAPPSSSQVTEAQRVEMQLRP | |||
GAFIKHGRKLDIDFGAEANRYYEANYWQFPDEIHYNGCSSEANVTREKFVSGCINATQAA | |||
NQEELSQERPDNRLHRRILWRLVRELCSVKHCDFWLENGAGLWVTVHRPVMPCLLVSIWFIVK* | |||
>PRND_pva Pteropus vampyrus frameshifty frag | |||
MRRQLGGCWLAIVCVLLFSQLSTVKARGIKHRTKWNR PCDRVS VTESQ GAFIKQGRK | |||
>PRND_csp Cynopterus sphinx bat Laurasiatheria; Chiroptera fragment | |||
KTLPSPSSHVTESQTAEMRPGAFVKQGRKLNIDFGDEGNRYYEAHYWEFPDGIYYDACSKANVTKEK | |||
FVTSCINATQAVNQEELSQEKQDKLLHQRILWQLIRELCSV | |||
>PRND_bta Bos taurus cow full length | |||
MRKHLGGCWLAIVCILLFSQLCSVKARGIKHRIKWNRKVLPSTSQVTEARTAEIRPGAFI | |||
KQGRKLDIDFGVEGNRYYEANYWQFPDGIHYNGCSKANVTKEKFITSCINATQAANQEEL | |||
SREKQDNKLYQRVLWQLIRELCSTKHCDFWLERGAGLRVTLDQPMMLCLLVFIWFIVK* | |||
>PRND_oar Ovis aries sheep full length | |||
MRKHLGGCWLAIVCVLLFSQLSSVKARGIKHRIKWNRKVLPSTSQVTEAHTAEIRPGAFI | |||
KQGRKLDINFGVEGNRYYEANYWQFPDGIHYNGCSEANVTKEKFVTSCINATQVANQEEL | |||
SREKQDNKLYQRVLWQLIRELCSIKHCDFWLERGAGLQVTLDQPMMLCLLVFIWFIVK* | |||
>PRND_chi Capra hircus (goat) | |||
MRKHLGGCWLAIVCVLLFSQLSSVKARGIKHRIKWNRKVLPSTSQVTEAHTAEIRPGAFIKQGRKLDINFGV | |||
EGNRYYEANYWQFPDGIHYNGCSEANVTKEKFVTSCINATQVANQEELSREKQDNKLYQRVLWQLIREL | |||
CSIKHCDFWLERGAGLQVTLDQPMMLCLLVFIWFIVK* | |||
>PRND_ama Antidorcas marsupialis (springbok) Bovidae; Antilopinae | |||
MRKHLGGCWLAIACILLFSQLSSVKARGIKHRIKWNRKVLPSTS | |||
QVTEAHTAEIRPGAFIKQGRKLDIDFGVEGNRYYEANYWQFPDGIHYNGCSEANVTKE | |||
KFVTSCINATQVANQEELSREKQDNKLYQRVLWQLIRELCSIKHCDFWLERGAGLRVT | |||
LDQPMMLCLLVFIWFIVK* | |||
>PRND_ttr Tursiops truncatus dolphin 1 trace ti|1435196145 | |||
MRKHLGGCWLAIVCVLLFSQLSSVKARGIKHRIKWNRKALPSTSQVTEAHTAEIRPGA | |||
FIRQGRKLDINFGAEGNRYYEANYWQLPDGIHYNGCSEANVTKEKFVTSCINATQAVNQ | |||
EELSREKQDNSLYQRVLWQLIRELCSNKQCDFWLERGAGLRVTLDQPMMLCLLVFIWFIVK* | |||
>PRND_pcw Physeter catodon sperm whale middle fragment | |||
KALPSTSQVTEAHTAEIVPGAFIKQGRKLDIDFGAEGNRYYEANYWQFPDGIHYNGCSEA | |||
SVTKEKFVTSCINATQEVNQEELSLEKPDNKLYQRVLWRLIRELCSI | |||
>PRND_ssc Sus scrofa pig full length ti|470951185 | |||
MRKHLGGRRWAIVCILLFSQLSEVKARGIKHRIKWNRKALPSTSQVTEAHTAEMRPGAFI | |||
KQGRKLDIDFGAEGNRYYEANYWRFPDGIHYNGCSEVNVTKEKFVTSCINTTQAANQEE | |||
SHEKPDNKLYQRVLWRLIRELCSIKHCDFWLERGAGLRVTMDQPMMLCLLVFIwfivk* | |||
>PRND_sar Sorex araneus shrew Laurasiatheria; Insectivora 7.23M tr | |||
MRKHLGWCLAIACVLLLCQVPAAQARGIKHRIKWGRKAPPSTPQVTEARVAEIRPGAFI | |||
RQGRKLNLNLGGEDKRYYDAYYWQFPDGIHYNGCSSANVTREKFISGCINATRAANQ | |||
EELSREKHDKLYQRVLWRLVRELCSLKRCDFWSERGAGLQVTVDQLMMFCLLAFTWFIMK* | |||
>PRND_eeu Erinaceus europaeus 10,952,642 seq complete | |||
MRKHLGGWWLAIVCVLFFSQLSAVKARGIKHRFKWNRKALPSTNHVTEAQVSEIRPGAFI | |||
RQGTKLDIDLGAEANRYYEANYWQFPDGIHYNGCSEVNVTKAKFIASCINATHSANQ | |||
EELSREKHDKLYQRVLWRLVRELCSLKRCDFWSERGAGLQVTVDQLMMFCLLAFTWFIMK* | |||
>PRND_ban Boreoeuthere ancestralis | |||
MRKHLGAWWLAIVCILLFSHLSTVKARGIKHRIKWNRKALPSTAQVTEAHVAEIRPGAFI | |||
RQGRKLDIDFGAEGNRYYEANYWQFPDGIHYNGCSEANVTKEMFVTSCINATQAANQEEF | |||
SREKQDNKLHQRVLWRLIRELCSIKHCDFWLERGAGLRVTLDQPVMLCLLVFIWFMVK* | |||
>PRND_dno Dasypus novemcinctus pseudo frag | |||
ANYWQLPDGILYDGCAEANVTKEALVAGCVNGHTAANQAELAHERQDTLHGRVLGRLIRELCALKRCKFWPDR | |||
>PRND_dno Dasypus novemcinctus | |||
MRKHLGGWRLAIVCVLLSGHLSMVKARGIKHRIKWNRKAAPGAAQVTEARVAEQRPGAFV | |||
RQGRRLDIDFGAEGNRYYEANYWQLPDGILYDGCAEANVTKEALVAGCVNATQLANQAEL | |||
AHEGQDTLHRRVLGRLIRELCALKRCKFWPDRAAGPRLVRGAPVFGGLLLLIWLLVR* | |||
>PRND_cho Choloepus hoffmanni sloth single trace old dasypus pseudogene, ti|563245674 | |||
MRKHLGGWWLAAVFVLLVCHLSVAKARGIKHRIKWNRKALPSAAQVTEARIAESRPGAFI | |||
KQGRKLDIDFGAEGNKYYEANYWQFPDGIHYDGCSEANVTKEVFVTGCINATQAANQAEF | |||
SREKHDKLHQRVLWRLIRELCSVKHCDFWLERGGGLRLTVDQPVVSACWFHLAYRE* | |||
>PRND_laf Loxodonta africana African elephant Afrotheria 176 aa revised/corrected | |||
MRKHLGAWWLAIAFVLLLSHLSMVTARGIKHRIKWNRKALPNTGHVTAAQVTETRPGAFI | |||
RHGRKLDIDFGAEGNRYYEANYWQFPDGIHYDGCSEANVTKEMFVTSCINTTQAANQEEF | |||
SRKQDNKVYQRILWRLIRELCSVKHCDFWLDRGGGLRVSLDQPVMLCLLVFIWFMVK* | |||
>PRND_ema Elephas maximus Asiatic elephant Afrotheria fragment | |||
KALPNTGHVTAAQVTETRPGAFIRHGRKLDIDFGAEGNRYYEANYWQFPDGIHYDGCSEA | |||
NVTKEMFVTSCINTTQAANQEEFSREKQDNKVYQRILWRLIRELCSV | |||
>PRND_pca Procavia capensis (cape rock hyrax) Afrotheria fragment AY130772 ti|1293358170 | |||
KPVTNPAHMTAAQVSDRRLGTFIRHGRKLDIDFGAEGNRYYEANYWLFPDGIHYDGCSDT | |||
NVTKELFVTNCINTTQAVNQEEFSREKQDNKLYQRILWRLIRELCSllglDFWPERVGGLffSLDQPVMLCLLVFIWFMLK* | |||
>PRND_ete Echinops telfairi Madagascar lesser tenrec Afrotheria 10,323,158 seq | |||
MRKHLGAGWLALACVLLFGHLSVVPARGIKHRIKWNRKTLPSTAHVTEARVSVTRPGAFV | |||
RHGQKLDVDLGADGNRYYEAHYWQFPDGIHYDGCSDANVTREMLVTRCINATQAANQAEF | |||
SAPPRDQQDSRLHQRVLWRLIRELCSAKRCDFWLEGAGASRAGLDQPPVLLGLLVLLGLTVK* | |||
>PRND_tma Trichechus manatus (Caribbean manatee) Afrotheria fragment | |||
KPLPNTPHVTAAQVSDARPGAFIRHGRKLDIDFGAEGNRYYEANYWQFPDGIHFDGCSEA | |||
NVTKEMFVTSCINTTQAANQEEFSREKQDNKLYQRILWRLIRELCSV | |||
>PRND_mdo Monodelphis domestica doppel genomic revised +rassf2 -prnd -prnp | |||
MRRHLGICWIAIFFALLFSDLSLVKAKTTRQRNKSNRKGLQTNRTNPTTVQPSEKLQGTF | |||
IRNGRKLVIDFGEEGNSYYATHYSLFPDEIHYAGCAESNVTKEVFISNCVNATRVINKLE | |||
PLEEQNISDIYSRILEQLIKELCALNYCEFRTGKGTGLRLSLDQYVMVYLVILTCLIVK* | |||
>PRND_meu Macropus eugenii wallaby | |||
MRRHLGTWWTAIFFALLFSDLSLVKAKGTRQRNKSNRKSLQTNRVNPTTAQPSEILQGAF | |||
IRQGRKLSIDFGEEGNSYYETHYQLFPDEIHYVGCTESNVTKDIFISNCMNATHAVNNLE | |||
TLEEKNASDIHSRVLEQLIKELCALKYCELETETGAGLKLSLDQSVMVYLVILTCLIVK* | |||
>PRND_oan Ornithorhynchus anatinus platypus 42% to opposum 187 aa 4 cys in register | |||
MMTVRRRRRSGGARWLLVFLVLLSGDLSSLQARGPRPRNKAGRKPPPSNAGPDSPAPRPPAGARGTFIRRGGRLSVDFGPEGNGYY | |||
QANYPLLPDAIVYPDCPTANGTREAFFGDCVNATHEANRGELTAGGNASDVHVRVLLRLVEELCALRDCGPALPTGPAPRPGPPGPPAALALLTLVLLGAQ* | |||
>PRND_aca Anolis carolinensis weak but real! scaffold_1221:78,884-117,121 syntenic, oriented like PRNP but no larger | |||
MMQRPLVVAILLTALWSEVCLCRRVSGSANRRNKKTSTTTSAPKLQSSTTATTFQGNLCRGGQMI | |||
DNMDLEPNDKVYYKANLKIFPDGLYYPNCSLLLQPNTTKEELVGECVNFTIASNKLNLSK | |||
GKDLSNTKERVMWVLIHHLCANESCGQPCPLLQNSGNLHYIGQVLTVFVGLIGCSFLSAK* | |||
>PRND_xtr Xenopus tropicalis frog 182 aa single exon 2 cDNAs odd unbalanced cysteines syntenic turtle-prnp like, no laevis | |||
MGRQNLFSCLILLLLILYCSLSSPRRAASSKKISKTTDLSRGAKRRPKVTNSPALGDLSFRGRALNVNFNLTEESELYTANLYSFPDGLYYPR | |||
PAHLSGAGGTDEFISGCLNTTIERNKVWISQLEDDEEGDIYMSVATQVLQFLCMENYVKPTNGAVTCTGGLWVFIGVMHFFFLFRKGD* | |||
</pre> | |||
<pre> | |||
>PRND_aca Anolis carolinensis dna sequence | |||
atgatgcagagacctctggtagtagccatccttttgacagccctatggagcgaggtctgtctctgtcggcgagtgagcgg | |||
atctgcaaataggcggaataagaagacttccaccaccacaagtgctcccaaacttcaaagctcaaccacagccacaacct | |||
tccaaggaaatctttgtcgtggtggtcaaatgattgacaatatggacctcgagccaaatgacaaagtctattacaaggca | |||
aacctgaagattttcccagatggactttattatcccaactgttccttgcttctgcagcccaacacgaccaaagaagagct | |||
cgttggtgaatgcgtcaatttcaccattgcatcaaataagttgaacctatctaaaggcaaggatttgagcaacacaaagg | |||
agagggtgatgtgggtcttgattcatcacttgtgtgcaaatgagtcgtgcggtcagccttgccctttgctccaaaactct | |||
ggaaatctccactatattggccaagtactcactgtatttgttggcctaattggttgctcttttctttctgcaaaataa | |||
</pre> | |||
[[Category:Comparative Genomics]] |
Revision as of 16:09, 16 November 2007
Dating doppel: missing from bird and fish genomes -- but present in marsupial, lizard and frog
The prion and doppel genes represent a local tandem duplication that has descended intact in most lineages with the two genes remaining adjacent and unpseudogenized (though both have spawned additional retroposed pseudogenes). When did this gene duplication take place, did it correlate with or facilitate an evolutionary advancement, and how have the (largely unknown) normal functions of the two genes since diverged? Retention of the second copy is somewhat puzzling in view of viability of PRNP knockouts, indeed ">double knockouts.
The weak homology between prion and doppel, below 30% identity even for the conserved core, suggests either a quite ancient duplication (lamprey era?) followed by average divergence, or alternatively, a fairly recent duplication (tetrapod era?) followed by rapid evolution on the doppel side as it acquired a auxillary function (neofunctionalized). These possibilities can be distinguished by looking at earlier diverging species that put a date on the duplication event.
If the duplication is old, then doppel should be found in various draft vertebrate genomes now available -- 34 mammals (see Genome completion status), chicken, lizard, frog, zebrafish, tetraodon, fugu, medaka, and stickleback. If gene order and orientation (synteny) are conserved, doppel will lie between PRNP and RASSF2, allowing highly diverged forms to be recognized that might give unconvincing blast matches. Of course synteny can be supplemented by conservation of internal signatures such as signal peptide, post-translationally modified arginine, disulfides, glycosylation sites, alpha helices, short beta sheet (YMLG in human), and GPI attachment. Repeat structure is trickier to use because it has been lost in all doppels and shifts from biphasic hexapeptide in frog, turtles, birds, and lizards to decapeptide (platypus), nonapeptide (marsupial), to octapeptide (placentals).
The brushtail opossum (Trichosurus vulpecular) prion gene sequence was determined in 1995. It conserves structural elements overall but presents various anomalies such as nonapeptide repeats. Its sequence can be used as query at the UCSC genome browser to find a complete second marsupial PRNP sequence from Monodelphis domestica. The two proteins have 86% sequence identity (not including repeat region), not necessarily indicating faster divergence since marsupials have had longer to diverge than placental mammals. The two 'opossums' here are not closely related, Didelphimorphia vs Diprotodontia. The second marsupial genome (Macropus eugenii) has been released unassembled to NCBI trace archives; full length PRNP and PRND sequences are readily covered there by trace blastn.
Monodelphis domestica PRND is located next to PRNP in the same orientation in a gapless region of the assembly. Within placental mammals, doppel homology is about 85% identity but this drops off to 46% relative to marsupial, indicating a relative fast-evolving protein in this lineage (but not yet a pseudogene). Indeed, with nearly PRNP gene sequences available in nearly a hundred species of placentals and the mammalian phylogenetic tree topology finally determined, clade-specific rate variations could be pursued in unusual detail, with a possible correlation with rates of doppel evolution.
Monotreme represents a still earlier divergence: PRNP and PRND can be recovered from the newly released assembly of the platypus genome, Ornithorhynchus anatinus. This species, which diverged after birds but before the Metatherian/Eutherian split, has a decapeptide x 4 repeat (rather than a bird- or turtle-like hexapeptide. However its sequence, PQGGGASWGH, is unusual for its glutamine in second position and terminal histidine (reverse of usual mammal residues). In other respects it is conventional.
The chicken genome is gap-free in this area and retains mammalian gene order and orientation (PRNP+, RASSF2-, and SCL23A-). However, no dopple gene occurs in chicken in the expected position. If prion gene duplication occurred prior to chicken divergence, then doppel decayed to an unrecognizable pseudogene, translocated to an unsequenced region, or has been deleted. No evidence for a decayed pseudogene is observed using a high-sensitivity blast of reconstructed ancestral doppel. The other bird genome underway, Taeniopygia guttata (finch), also lacks PRND.
Very recently, a lizard genome became available, Anolis carolinensis. Using specialized methods, a full length PRND gene has be located in expected syntenic position and validated by retained internal signatures despite its very weak blast score. Similarly in the diploid frog, Xenopus tropicalis, an unmistakable frog doppel gene occurs at expected position and orientation. These results have a simple parsimonious explanation: the PRND duplication predated amphibian divergence, followed by a lineage-specific deletion in the bird clade. Crocodile sequencing could refine the date of this event.
In support, lizard and frog doppel queries retrieve solely mammalian and turtle PRND genes when back-blasted against the GenBank non-redundant nucleotide division. This argues against the idea of multiple independent duplications of the prion gene in lizard and frog distinct from a later lineage-specific duplication in mammals (with birds then never having a PRND to delete).
Note the more familiar tetraploid laboratory frog, Xenopus laevis, has two actively transcribed PRNP genes that differ slightly in the repeat-like region as well at a few individual amino acids. Their sequences are given below. No sign of doppel can be found in Xenopus laevis cDNA (unsurprisingly since doppel transcription is rare); no genome project is underway. There may be two doppels in this species, depending on the relative timing of PRNP duplication and the tetraploidization event and selective pressure to maintain two copies.
The prion gene in teleost fish has radically diverged from its mammalian counterpart especially in the repeat region but remains recognizable via various conserved anchor features, residual synteny, and weak homology. Fugu has a second PRNP gene on a different chromosome (resulting from the whole genome duplication in Teleostei) plus an apparent novel tandem duplication that resembles PRNP rather than PRND. Coelocanth genome has been proposed but not begun -- that could further refine the timing of PRND duplication. As it stands, that event occurred after teleost fish divergence but before that of amphibians, about 400 million years ago. The prion gene clearly represents the ancestral form and presumably function, ie, a doppel-like ancestor did not duplicate to a second gene that become PRNP. No counterpart of PRNP can be located in the initial release of the chondrichthyian genome, Callorhynchus milii, but that will be finished to higher coverage in a few months.
Doppels are evolving noticeably faster than prions but have not become pseudogenes in any species investigated to date. (Note very recent pseudogenes that have not yet acquired internal stop codons or loss of deeply invariant residues are difficult to detect.) It must be remembered that PRNP's globular region lies within the most slowly evolving quartile of mammalian genes. As a representative example, human/dog proteins have 78% identity for PRND but 87% for PRNP. A reconstructed ancestral mammal sequence for PRND shows no sign whatsoever of converging to a PRNP-like sequence, percent identity ancester-to-ancestor remains in the mid-20's. Since this uses up 100 million years of the 400 available, doppel evolved more drastically at an earlier time, perhaps soon after the duplication event.
To further investigate the co-evolution of PRNP and PRND, it is imperative to first collect gene sequences from a phylogenetically representative sample of species. PRNP tends to be over-sampled within Artiodactylia, indeed Bovidae. Doppel remains very poorly represented at dbEST even within much-studied mammals and enriched libraries, even in testis, a tissue where it is transcribed. The most economical explanation of the data is that doppel has a narrow function with limited and specialized expression in uncommon cell types, yet one important enough for gene retention.
However a respectable number of tetrapod doppel sequences have accumulated. In addition to genome projects, van Rheede and coworkers sequenced nine doppels from important early diverging clades of placental mammals. PRND from the chimpanzee genome has special interest for evaluating known human doppel polymorphisms to determine "wildtype" human. Macaque doppel can also the 2 amino acid deletion seen in human at position 122-123, showing this event predated old world monkey divergence. In fact that event can be precisely timed to the stem lying between tarsier and new world monkey divergence and shown non-homplasic using various genome projects underway:
PRND_hsa ANQGEFQ--KPDNKLHQQVLWRLVQELCS Homo sapiens (human) PRND_ptr ANQGEFQ--KPDNKLHQQVLWRLVRELCS Pan troglodytes (chimp) PRND_ggo ANQGEFH--KPDNKLHQQVLWRLVRELCS Gorilla gorilla (gorilla) PRND_ppy ANQGEFQ--KPDNKLHQQVLWRLVQELCS Pongo pygmaeus (orang_sumatran) PRND_nle ANQGEFQ--KPDNKLHQRVLWRLVRELCS Nomascus leucogenys (gibbon) PRND_mml ENQGEFQ--KPDNKLHQRVLWRLVQELCS Macaca mulatta (rhesus) PRND_pha ANQGEFQ--KPDNKLHQRVLWRLVQELCS Papio hamadryas (baboon) PRND_cja ANQAEFQ--KPDNKLHQRVLWRLVQELCS Callithrix jacchus (marmoset_nwm) PRND_tsy ANAAERPREARDDPLHQRVLGRLVRELCS Tarsius syrichta (tarsier) PRND_mmr ANQAEFAREKQD-KLHERILWRLTRELCS Microcebus murinus (mouse_lemur) PRND_tbe ANQAEFSKEKQDNKLYQRVLWRLIKELCS Tupaia belangeri (tree_shrew) PRND_ocu ANQGEFSREKQDNKLHQRVLWRLIKELCS Oryctolagus cuniculus (rabbit) PRND_opr ANQGEFSREKQ-NKLHQRVLWRLIKELCS Ochotona princeps (pika) PRND_dor ANQAEFAREMQD-KFYQRVLWRLTKELCA Dipodomys ordii (kangaroo_rat) PRND_str ANQAEFSREKQDNKLHQRVLWRLIKELCS Spermophilus tridecemlineatus (ground_squirrel) PRND_rno ANQAEFSREKQDSKLHQRVLWRLIKEICS Rattus norvegicus (rat) PRND_mmu ANQAEFSREKQDSKLHQRVLWRLIKEICS Mus musculus (mouse) PRND_cpo ANQAEFSREKQDNKLHQRILWRLIKELCS Cavia porcellus (guinea_pig) PRND_sar ANQEELSREKHD-KLYQRVLWRLVRELCS Sorex araneus (shrew) PRND_eeu ANQEELSREKHD-KLYQRVLWRLVRELCS Erinaceus europaeus (hedgehog) PRND_cfa ANQEELSREKQDNKLHQRVLWRLIRELCS Canis familiaris (dog) PRND_fca ANQEELSREKQDDKLYQRVLWRLNR-ECS Felis catus (cat) PRND_tte ENQEELSREKQDDKLHQRILWRLIRELCS Tapirus terrestris (tapir) PRND_eca ANQEELSQEKQDDKLYQRILWRLISELCS Equus caballus (horse) PRND_mlu ANQEELSQERPDNRLHRRILWRLVRELCS Myotis lucifugus (microbat) PRND_csp VNQEELSQEKQDKLLHQRILWQLIRELCS Cynopterus sphinx (bat) PRND_oar ANQEELSREKQDNKLYQRVLWQLIRELCS Ovis aries (sheep) PRND_chi ANQEELSREKQDNKLYQRVLWQLIRELCS Capra hircus (goat) PRND_bta ANQEELSREKQDNKLYQRVLWQLIRELCS Bos taurus (cow) PRND_ttr VNQEELSREKQDNSLYQRVLWQLIRELCS Tursiops truncatus (dolphin) PRND_ssc ANQEE-SHEKPDNKLYQRVLWRLIRELCS Sus scrofa (pig) PRND_pcw VNQEELSLEKPDNKLYQRVLWRLIRELCS Physeter catodon (whale) PRND_ban ANQEEFSREKQDNKLHQRVLWRLIRELCS Boreoeuthere ancestralis (boreoeuthere) PRND_dno ANQAELAHERQD-TLHGRVLGRLIRELCA Dasypus novemcinctus (armadillo) PRND_cho ANQAEFSREKHD-KLHQRVLWRLIRELCS Choloepus hoffmanni (sloth) PRND_pcp VNQEEFSREKQDNKLYQRILWRLIRELCS Procavia capensis (hyrax) PRND_ete ANQAEFSAPQQDSRLHQRVLWRLIRELCS Echinops telfairi (tenrec) PRND_ema ANQEEFSREKQDNKVYQRILWRLIRELCS Elephas maximus (elephant) PRND_laf ANQEEFSR-KQDNKVYQRILWRLIRELCS Loxodonta africana (elephant) PRND_tma ANQEEFSREKQDNKLYQRILWRLIRELCS Trichechus manatus (manatee) PRND_mdo INKLEPLEEQNISDIYSRILEQLIKELCA Monodelphis domestica (opossum) PRND_meu VNNLETLEEKNASDIHSRVLEQLIKELCA Macropus eugenii (wallaby) PRND_oan ANRGELTAGGNASDVHVRVLLRLVEELCA Ornithorhynchus anatinus (platypus) PRND_aca SNKLNLSKGKDLSNTKERVMWVLIHHLCA Anolis carolinensis (lizard) PRND_xtr RNKVWISQLEDDEEGDIYMSVATQVLQFLCM Xenopus tropicalis (frog) ** * . * *. ::*::**:* :* .:
Below 45 PRND doppel sequences from land vertebrates are provided. Most are complete and reliable, but others are fragmentary and no better than the ongoing genome project from which they were extracted (initially low coverage, perhaps a single applicable trace). The phylogenetic distribution is approximately half as extensive as for PRNP. Almost all species having an available PRND would also have an available PRNP. It would be very easy to extend PRND coverage since primer design for PCR presents no issues. All sequences consist of a single coding intron. The only rare genomic event for PRND of any phylogenetic depth is the indel shown above.
11 primates (Euarchonta) 7 glires (rodents and rabbits) 14 laurasiatheres 1 ancestral boreoeuthere 2 xenarthrans 5 aftrotheres 2 marsupial 1 platypus 0 bird 1 lizard 1 amphibian
>PRND_hsa human full length MRKHLSWWWLATVCMLLFSHLSAVQTRGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGRKLDIDFGAEGNRYY EANYWQFPDGIHYNGCSEANVTKEAFVTGCINATQAANQGEFQKPDNKLHQQVLWRLVQELCSLKHCEFWLERGAGLRVTMHQPVLLCLLALIWLTVK* >PRND_ptr Pan chimpanzee full length MRKHLSWWWLATVCMLLFSHLSAVQARGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGRKLDIDFGAEGNRYY EANYWQFPDGIHYNGCSEANVTKEVFVTGCIHATQAANQGEF QKPDNKLHQQVLWRLVRELCSLKHCEFWLERGAGLRVTMHQPVLLCLLAFIWLMVK* >PRND_ggo gorilla MRKHLSWWWLATVCMLFFSHLSAVQARGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGRKLDIDFGAEGNRYY EANYWQFPDGIHYNGCSEANVTKEVFVTGCINATQAANQGEF HKPDNKLHQQVLWRLVRELCSLKHCEWLERSAGLRVTMHQPVLLCLLAFIWLMMK* >PRND_ppy Pongo pygmaeus orangutan shares 2 bp deletion unique to primates. MKNHLSWWLATVCMLLFSHLSAVQARGIKHRIKWNRKALPSTAQITEAPGAENRPGALSkQGR QLDIDFGTEGNRYYEANYWQFPDGIHYDGCSEANVTKEVFVTGCINATQAANQGEFQ KPDNKLHQQVLWRLVQELCSLKHCEFWLERGAGLRVTMHQPVLLCLLAFIWLMVK* >PRND_nle Nomascus leucogenys gibbon MRKHLSWWWLATVCMLLFSHLSAVQARGIKHRIKWNRKALPSTAQITEAQVAENRPGGFIKQGRKLDIDFGAEGNRYY EANYWQFPDGIHYDGCSEANVTKEVFV TGCINATQAANQGEFQKPDNKLHQRVLWRLVRELCSLKRCEFWLERGAGLRVTMHQPVLLCLLAFIWLMVK* >PRND_pha Papio hamadryas (baboon) WLSRLHAAPQ HLSLVVQARGIKHRIKWNRKALPSTAQITEAQVAENPPGSFIKQGRKLNIDFGAEGNRYY EANYWQFPDGIHYDGCSEANVTKEVFVTGC INATQAANQGEFQKPDNKLHQRVLWRLVQELCSLKRCEFWLEGGAGLRVTMHQPVLLCLPAFVWLMVK* >PRND_mml Macaca mulata full length from trace archives MRQHLSRWWLATVCMLLLSHLSVVQARGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGR KLNIDFGAEGNRYYEANYWQFPDGIHYDGCSEANVTKEVFVTGCINATQAENQGEFQK PDNKLHQRVLWRLVQELCSLKRCEFWLERGAGLRVTMHQPVLLCLPAFVWLMV* >PRND_cja Callithrix jacchus 1st new world monkey 89% MRKHLSGWWLATVCMLLFSHLSAVQARGIKHRIKWNRKALPSAAQITEAQVAENRPGTFIKQGRKLDINFGAEGNRYY EANYWQLPDGIHYDGCSETNVTKEVFVTGCINATQAANQAEFQKPDNKLHQRVLWRLVQELCSLKRCEFWLERGAGFRVATHQPLLLCLLAFIWLMAK* >PRND_tsy Tarsius syrichta tarsier MRKPLGGWRLAVVCVLLLGLLSAARARGIKHRFKWNRKASPSAARVTEARVAESRPGAFIRRGRKLDIDFGAEGNKYY EANYWQFPDGIHYDGCSKANVTKELLVAGCINATHAANAAERPREARDDPLHQRVLGRLVRELCSAKHCDFWPERAAAPGTARARPGALLLVSRL >PRND_mmr Microcebus murinus GNRYYEANYWQFPDGIHYDGCSDANVTKEVFVASCINATVAANQAEFAREKQDKLHERILWRLTRELCSVKRCEFWLERGAGLRVAEDCPTILSLLLLLWLLLR* >PRND_tbe Tupaia belangeri tree shrew 6.7 m tr frag RALPSTAHITEARVAENRPGAFIRQGRKLDIDFGVEGNRYYEANYWQFPDGIHYDGCSEVNVTKEMFITSCINATQA ANQAEFSKEKQDNKLYQRVLWRLIKELCSIKHCDFWLERGAGLRVTMHLPVMLCLLVFVWFVVK* >PRND_mmu Mus musculus mouse full length MKNRLGTWWVAILCMLLASHLSTVKARGIKHRFKWNRKVLPSSGGQITEARVAENRPGAF IKQGRKLDIDFGAEGNRYYAANYWQFPDGIYYEGCSEANVTKEMLVTSCVNATQAANQAE FSREKQDSKLHQRVLWRLIKEICSAKHCDFWLERGAALRVAVDQPAMVCLLGFVWFIVK* >PRND_rno Rattus norvegicus rat full length MKNRVGTWGLAILCLLLASHLSTVKARGIKHRFKWNRKVLPSSGQITEAQV AENRPGAFIKQGRKLDIDFGAEGNKYYAANYWQFPDGIYYEGCSEANVTKEVLVTRCVNA TQAANQAEFSREKQDSKLHQRVLWRLIKEICSTKHCDFWLERGAALRITVDQQAMVCLLGFIWFIVK* >PRND_cpo Cavia porcellus (guinea pig) fragment AY130773 N-extended at traces 7,499,469 seq MKTSLCVWALVCVLLQCHFSSVAARGIKHRIRWGRKPTPSPSQVTEARVAMTRPGAFIKEGHKLNIDFGAEGNRYYETNYWQFPDGIHYNGCSDT NVTKEVLVTSCINATQAANQAEFSREKQDNKLHQRILWRLIKELCSA >PRND_dor Dipodomys ordii pseudogene ITEARYRENAQGPSSIKP--QADIDF--ERAQ*YEA*YWQFADGINYEGCSRRHVTKQMF VSRCINVTQAANQAEFAREMQD-KFYQRVLWRLTKELCAVKQCDFWLERGEGCPVAIVNR PAMLGLLLCMWFIL >PRND_str Spermophilus tridecemlineatus ground squirrel complete tr MKKHLGTWGLAVVCVLLSTHLSAIKARGIKHRIKWNRKSVPSTVQITEAQVAQNPPGAF IKQGRKLHIDFGAEGNKYYEANYWQFPDGIYYDGCSEANVTKEVFIAKCINATQAANQAE FSREKQDNKLHQRVLWRLIKELCSVKHCDFWLEGGAGFQLSVDQPVMLCLLVFIWLMVK* >PRND_ocu Oryctolagus cuniculus rabbit revised complete from traces 8,968,713 sequences 75% MRKHLGAWGLAIVCVLLFSHLPPAKARGIKHRIKWNRKALPSTAQITEAHVAENRPGTFI RQGRKLNIDFGPEGNKYYEANYWQFPDGVHYDGCSEGNVTKEAFVAKCVNATQAANQGE FSREKQDNKLHQRVLWRLIKELCSIKHCDFWLERGAGVQVGGEQPLVLGLLLCTWLLVK* >PRND_opr Ochotona princeps pika complete MRKHLGGWGLAIVCVLLFSLLPTVKARGIKHRIKWNRKALPSTAQITEARVAENRPGTFIRQGQKLSIDFGPEGNKYY EANYWQFPDGIHYDGCSEGNVTKEVFVAKCINATQAANQGEFSREKQNKLHQRVLWRLIKELCSIKHCDFWLERGAGFPVTVGQPMVVLCLLIFTWVLVK* >PRND_cfa Canis familiaris dog full length MRKHLGGCWLAIVCVLLLSQLSAVEARGIKHRIKWNRKALPGTSQVTEARSAEIRPGAFI RQGRKLDIDLGPEGNRYYEANYWQFPDGIHYNGCSEANVTKEKFVTGCINATQVANQEEL SREKQDNKLHQRVLWRLIRELCSVKRCDFWLERGAGPRVAGAQPVLLCLLAFIWFIVK* >PRND_fca Felis catus cat improved fragment 8,248,053 traces now 9.2 MRKHLGGCWLAIVCVLLFSQLSAVKARGIKHRIKWNRKTLPSISQVTEAHTAEIRPGAFIRQGRKLDIDLG AEGNRYYEANYWQFPDGIHYNGCSEANVTKEKFVTSCINATQVANQEELSREKQDhKLYQRVLWRLNREALLWSAHGNFGRERG >PRND_eca Equus caballus perissodactyl MRKHLGGCCLAIVCVLLFSQLPVVLSRGTKHRIKWNRKALPSTAKVTEARVEEIRPGAF IRQGRKLNINFGAEGNRYYEANYWQFPDEIHYNGCSEANVTKEKFVISCINATQEANQEE LSQEKQDDKLYQRILWRLISELCSVKHCDFGLESGTGLRVTMDQPVLLCLLVFIWFIVK* >PRND_tte Tapirus terrestris (Brazilian tapir) perissodactyl fragment KALPSTSKVTEAHTAEIRPGAFIRQGRKLNIDFGAEGNRYYEANYWQFPDEIHYNGCSEA NVTKEKFVISCINATQAENQEELSREKQDDKLHQRILWRLIRELCSV >PRND_mlu Myotis lucifugus traces ti|983665423 complete MRKQLGGCCLAIVCVLLFSQLAAVQARGIKHRIKWNRKGAAPPSSSQVTEAQRVEMQLRP GAFIKHGRKLDIDFGAEANRYYEANYWQFPDEIHYNGCSSEANVTREKFVSGCINATQAA NQEELSQERPDNRLHRRILWRLVRELCSVKHCDFWLENGAGLWVTVHRPVMPCLLVSIWFIVK* >PRND_pva Pteropus vampyrus frameshifty frag MRRQLGGCWLAIVCVLLFSQLSTVKARGIKHRTKWNR PCDRVS VTESQ GAFIKQGRK >PRND_csp Cynopterus sphinx bat Laurasiatheria; Chiroptera fragment KTLPSPSSHVTESQTAEMRPGAFVKQGRKLNIDFGDEGNRYYEAHYWEFPDGIYYDACSKANVTKEK FVTSCINATQAVNQEELSQEKQDKLLHQRILWQLIRELCSV >PRND_bta Bos taurus cow full length MRKHLGGCWLAIVCILLFSQLCSVKARGIKHRIKWNRKVLPSTSQVTEARTAEIRPGAFI KQGRKLDIDFGVEGNRYYEANYWQFPDGIHYNGCSKANVTKEKFITSCINATQAANQEEL SREKQDNKLYQRVLWQLIRELCSTKHCDFWLERGAGLRVTLDQPMMLCLLVFIWFIVK* >PRND_oar Ovis aries sheep full length MRKHLGGCWLAIVCVLLFSQLSSVKARGIKHRIKWNRKVLPSTSQVTEAHTAEIRPGAFI KQGRKLDINFGVEGNRYYEANYWQFPDGIHYNGCSEANVTKEKFVTSCINATQVANQEEL SREKQDNKLYQRVLWQLIRELCSIKHCDFWLERGAGLQVTLDQPMMLCLLVFIWFIVK* >PRND_chi Capra hircus (goat) MRKHLGGCWLAIVCVLLFSQLSSVKARGIKHRIKWNRKVLPSTSQVTEAHTAEIRPGAFIKQGRKLDINFGV EGNRYYEANYWQFPDGIHYNGCSEANVTKEKFVTSCINATQVANQEELSREKQDNKLYQRVLWQLIREL CSIKHCDFWLERGAGLQVTLDQPMMLCLLVFIWFIVK* >PRND_ama Antidorcas marsupialis (springbok) Bovidae; Antilopinae MRKHLGGCWLAIACILLFSQLSSVKARGIKHRIKWNRKVLPSTS QVTEAHTAEIRPGAFIKQGRKLDIDFGVEGNRYYEANYWQFPDGIHYNGCSEANVTKE KFVTSCINATQVANQEELSREKQDNKLYQRVLWQLIRELCSIKHCDFWLERGAGLRVT LDQPMMLCLLVFIWFIVK* >PRND_ttr Tursiops truncatus dolphin 1 trace ti|1435196145 MRKHLGGCWLAIVCVLLFSQLSSVKARGIKHRIKWNRKALPSTSQVTEAHTAEIRPGA FIRQGRKLDINFGAEGNRYYEANYWQLPDGIHYNGCSEANVTKEKFVTSCINATQAVNQ EELSREKQDNSLYQRVLWQLIRELCSNKQCDFWLERGAGLRVTLDQPMMLCLLVFIWFIVK* >PRND_pcw Physeter catodon sperm whale middle fragment KALPSTSQVTEAHTAEIVPGAFIKQGRKLDIDFGAEGNRYYEANYWQFPDGIHYNGCSEA SVTKEKFVTSCINATQEVNQEELSLEKPDNKLYQRVLWRLIRELCSI >PRND_ssc Sus scrofa pig full length ti|470951185 MRKHLGGRRWAIVCILLFSQLSEVKARGIKHRIKWNRKALPSTSQVTEAHTAEMRPGAFI KQGRKLDIDFGAEGNRYYEANYWRFPDGIHYNGCSEVNVTKEKFVTSCINTTQAANQEE SHEKPDNKLYQRVLWRLIRELCSIKHCDFWLERGAGLRVTMDQPMMLCLLVFIwfivk* >PRND_sar Sorex araneus shrew Laurasiatheria; Insectivora 7.23M tr MRKHLGWCLAIACVLLLCQVPAAQARGIKHRIKWGRKAPPSTPQVTEARVAEIRPGAFI RQGRKLNLNLGGEDKRYYDAYYWQFPDGIHYNGCSSANVTREKFISGCINATRAANQ EELSREKHDKLYQRVLWRLVRELCSLKRCDFWSERGAGLQVTVDQLMMFCLLAFTWFIMK* >PRND_eeu Erinaceus europaeus 10,952,642 seq complete MRKHLGGWWLAIVCVLFFSQLSAVKARGIKHRFKWNRKALPSTNHVTEAQVSEIRPGAFI RQGTKLDIDLGAEANRYYEANYWQFPDGIHYNGCSEVNVTKAKFIASCINATHSANQ EELSREKHDKLYQRVLWRLVRELCSLKRCDFWSERGAGLQVTVDQLMMFCLLAFTWFIMK* >PRND_ban Boreoeuthere ancestralis MRKHLGAWWLAIVCILLFSHLSTVKARGIKHRIKWNRKALPSTAQVTEAHVAEIRPGAFI RQGRKLDIDFGAEGNRYYEANYWQFPDGIHYNGCSEANVTKEMFVTSCINATQAANQEEF SREKQDNKLHQRVLWRLIRELCSIKHCDFWLERGAGLRVTLDQPVMLCLLVFIWFMVK* >PRND_dno Dasypus novemcinctus pseudo frag ANYWQLPDGILYDGCAEANVTKEALVAGCVNGHTAANQAELAHERQDTLHGRVLGRLIRELCALKRCKFWPDR >PRND_dno Dasypus novemcinctus MRKHLGGWRLAIVCVLLSGHLSMVKARGIKHRIKWNRKAAPGAAQVTEARVAEQRPGAFV RQGRRLDIDFGAEGNRYYEANYWQLPDGILYDGCAEANVTKEALVAGCVNATQLANQAEL AHEGQDTLHRRVLGRLIRELCALKRCKFWPDRAAGPRLVRGAPVFGGLLLLIWLLVR* >PRND_cho Choloepus hoffmanni sloth single trace old dasypus pseudogene, ti|563245674 MRKHLGGWWLAAVFVLLVCHLSVAKARGIKHRIKWNRKALPSAAQVTEARIAESRPGAFI KQGRKLDIDFGAEGNKYYEANYWQFPDGIHYDGCSEANVTKEVFVTGCINATQAANQAEF SREKHDKLHQRVLWRLIRELCSVKHCDFWLERGGGLRLTVDQPVVSACWFHLAYRE* >PRND_laf Loxodonta africana African elephant Afrotheria 176 aa revised/corrected MRKHLGAWWLAIAFVLLLSHLSMVTARGIKHRIKWNRKALPNTGHVTAAQVTETRPGAFI RHGRKLDIDFGAEGNRYYEANYWQFPDGIHYDGCSEANVTKEMFVTSCINTTQAANQEEF SRKQDNKVYQRILWRLIRELCSVKHCDFWLDRGGGLRVSLDQPVMLCLLVFIWFMVK* >PRND_ema Elephas maximus Asiatic elephant Afrotheria fragment KALPNTGHVTAAQVTETRPGAFIRHGRKLDIDFGAEGNRYYEANYWQFPDGIHYDGCSEA NVTKEMFVTSCINTTQAANQEEFSREKQDNKVYQRILWRLIRELCSV >PRND_pca Procavia capensis (cape rock hyrax) Afrotheria fragment AY130772 ti|1293358170 KPVTNPAHMTAAQVSDRRLGTFIRHGRKLDIDFGAEGNRYYEANYWLFPDGIHYDGCSDT NVTKELFVTNCINTTQAVNQEEFSREKQDNKLYQRILWRLIRELCSllglDFWPERVGGLffSLDQPVMLCLLVFIWFMLK* >PRND_ete Echinops telfairi Madagascar lesser tenrec Afrotheria 10,323,158 seq MRKHLGAGWLALACVLLFGHLSVVPARGIKHRIKWNRKTLPSTAHVTEARVSVTRPGAFV RHGQKLDVDLGADGNRYYEAHYWQFPDGIHYDGCSDANVTREMLVTRCINATQAANQAEF SAPPRDQQDSRLHQRVLWRLIRELCSAKRCDFWLEGAGASRAGLDQPPVLLGLLVLLGLTVK* >PRND_tma Trichechus manatus (Caribbean manatee) Afrotheria fragment KPLPNTPHVTAAQVSDARPGAFIRHGRKLDIDFGAEGNRYYEANYWQFPDGIHFDGCSEA NVTKEMFVTSCINTTQAANQEEFSREKQDNKLYQRILWRLIRELCSV >PRND_mdo Monodelphis domestica doppel genomic revised +rassf2 -prnd -prnp MRRHLGICWIAIFFALLFSDLSLVKAKTTRQRNKSNRKGLQTNRTNPTTVQPSEKLQGTF IRNGRKLVIDFGEEGNSYYATHYSLFPDEIHYAGCAESNVTKEVFISNCVNATRVINKLE PLEEQNISDIYSRILEQLIKELCALNYCEFRTGKGTGLRLSLDQYVMVYLVILTCLIVK* >PRND_meu Macropus eugenii wallaby MRRHLGTWWTAIFFALLFSDLSLVKAKGTRQRNKSNRKSLQTNRVNPTTAQPSEILQGAF IRQGRKLSIDFGEEGNSYYETHYQLFPDEIHYVGCTESNVTKDIFISNCMNATHAVNNLE TLEEKNASDIHSRVLEQLIKELCALKYCELETETGAGLKLSLDQSVMVYLVILTCLIVK* >PRND_oan Ornithorhynchus anatinus platypus 42% to opposum 187 aa 4 cys in register MMTVRRRRRSGGARWLLVFLVLLSGDLSSLQARGPRPRNKAGRKPPPSNAGPDSPAPRPPAGARGTFIRRGGRLSVDFGPEGNGYY QANYPLLPDAIVYPDCPTANGTREAFFGDCVNATHEANRGELTAGGNASDVHVRVLLRLVEELCALRDCGPALPTGPAPRPGPPGPPAALALLTLVLLGAQ* >PRND_aca Anolis carolinensis weak but real! scaffold_1221:78,884-117,121 syntenic, oriented like PRNP but no larger MMQRPLVVAILLTALWSEVCLCRRVSGSANRRNKKTSTTTSAPKLQSSTTATTFQGNLCRGGQMI DNMDLEPNDKVYYKANLKIFPDGLYYPNCSLLLQPNTTKEELVGECVNFTIASNKLNLSK GKDLSNTKERVMWVLIHHLCANESCGQPCPLLQNSGNLHYIGQVLTVFVGLIGCSFLSAK* >PRND_xtr Xenopus tropicalis frog 182 aa single exon 2 cDNAs odd unbalanced cysteines syntenic turtle-prnp like, no laevis MGRQNLFSCLILLLLILYCSLSSPRRAASSKKISKTTDLSRGAKRRPKVTNSPALGDLSFRGRALNVNFNLTEESELYTANLYSFPDGLYYPR PAHLSGAGGTDEFISGCLNTTIERNKVWISQLEDDEEGDIYMSVATQVLQFLCMENYVKPTNGAVTCTGGLWVFIGVMHFFFLFRKGD*
>PRND_aca Anolis carolinensis dna sequence atgatgcagagacctctggtagtagccatccttttgacagccctatggagcgaggtctgtctctgtcggcgagtgagcgg atctgcaaataggcggaataagaagacttccaccaccacaagtgctcccaaacttcaaagctcaaccacagccacaacct tccaaggaaatctttgtcgtggtggtcaaatgattgacaatatggacctcgagccaaatgacaaagtctattacaaggca aacctgaagattttcccagatggactttattatcccaactgttccttgcttctgcagcccaacacgaccaaagaagagct cgttggtgaatgcgtcaatttcaccattgcatcaaataagttgaacctatctaaaggcaaggatttgagcaacacaaagg agagggtgatgtgggtcttgattcatcacttgtgtgcaaatgagtcgtgcggtcagccttgccctttgctccaaaactct ggaaatctccactatattggccaagtactcactgtatttgttggcctaattggttgctcttttctttctgcaaaataa
Dating doppel: missing from bird and fish genomes -- but present in marsupial, lizard and frog
The prion and doppel genes represent a local tandem duplication that has descended intact in most lineages with the two genes remaining adjacent and unpseudogenized (though both have spawned additional retroposed pseudogenes). When did this gene duplication take place, did it correlate with or facilitate an evolutionary advancement, and how have the (largely unknown) normal functions of the two genes since diverged? Retention of the second copy is somewhat puzzling in view of viability of PRNP knockouts, indeed ">double knockouts.
The weak homology between prion and doppel, below 30% identity even for the conserved core, suggests either a quite ancient duplication (lamprey era?) followed by average divergence, or alternatively, a fairly recent duplication (tetrapod era?) followed by rapid evolution on the doppel side as it acquired a auxillary function (neofunctionalized). These possibilities can be distinguished by looking at earlier diverging species that put a date on the duplication event.
If the duplication is old, then doppel should be found in various draft vertebrate genomes now available -- 34 mammals (see Genome completion status), chicken, lizard, frog, zebrafish, tetraodon, fugu, medaka, and stickleback. If gene order and orientation (synteny) are conserved, doppel will lie between PRNP and RASSF2, allowing highly diverged forms to be recognized that might give unconvincing blast matches. Of course synteny can be supplemented by conservation of internal signatures such as signal peptide, post-translationally modified arginine, disulfides, glycosylation sites, alpha helices, short beta sheet (YMLG in human), and GPI attachment. Repeat structure is trickier to use because it has been lost in all doppels and shifts from biphasic hexapeptide in frog, turtles, birds, and lizards to decapeptide (platypus), nonapeptide (marsupial), to octapeptide (placentals).
The brushtail opossum (Trichosurus vulpecular) prion gene sequence was determined in 1995. It conserves structural elements overall but presents various anomalies such as nonapeptide repeats. Its sequence can be used as query at the UCSC genome browser to find a complete second marsupial PRNP sequence from Monodelphis domestica. The two proteins have 86% sequence identity (not including repeat region), not necessarily indicating faster divergence since marsupials have had longer to diverge than placental mammals. The two 'opossums' here are not closely related, Didelphimorphia vs Diprotodontia. The second marsupial genome (Macropus eugenii) has been released unassembled to NCBI trace archives; full length PRNP and PRND sequences are readily covered there by trace blastn.
Monodelphis domestica PRND is located next to PRNP in the same orientation in a gapless region of the assembly. Within placental mammals, doppel homology is about 85% identity but this drops off to 46% relative to marsupial, indicating a relative fast-evolving protein in this lineage (but not yet a pseudogene). Indeed, with nearly PRNP gene sequences available in nearly a hundred species of placentals and the mammalian phylogenetic tree topology finally determined, clade-specific rate variations could be pursued in unusual detail, with a possible correlation with rates of doppel evolution.
Monotreme represents a still earlier divergence: PRNP and PRND can be recovered from the newly released assembly of the platypus genome, Ornithorhynchus anatinus. This species, which diverged after birds but before the Metatherian/Eutherian split, has a decapeptide x 4 repeat (rather than a bird- or turtle-like hexapeptide. However its sequence, PQGGGASWGH, is unusual for its glutamine in second position and terminal histidine (reverse of usual mammal residues). In other respects it is conventional.
The chicken genome is gap-free in this area and retains mammalian gene order and orientation (PRNP+, RASSF2-, and SCL23A-). However, no dopple gene occurs in chicken in the expected position. If prion gene duplication occurred prior to chicken divergence, then doppel decayed to an unrecognizable pseudogene, translocated to an unsequenced region, or has been deleted. No evidence for a decayed pseudogene is observed using a high-sensitivity blast of reconstructed ancestral doppel. The other bird genome underway, Taeniopygia guttata (finch), also lacks PRND.
Very recently, a lizard genome became available, Anolis carolinensis. Using specialized methods, a full length PRND gene has be located in expected syntenic position and validated by retained internal signatures despite its very weak blast score. Similarly in the diploid frog, Xenopus tropicalis, an unmistakable frog doppel gene occurs at expected position and orientation. These results have a simple parsimonious explanation: the PRND duplication predated amphibian divergence, followed by a lineage-specific deletion in the bird clade. Crocodile sequencing could refine the date of this event.
In support, lizard and frog doppel queries retrieve solely mammalian and turtle PRND genes when back-blasted against the GenBank non-redundant nucleotide division. This argues against the idea of multiple independent duplications of the prion gene in lizard and frog distinct from a later lineage-specific duplication in mammals (with birds then never having a PRND to delete).
Note the more familiar tetraploid laboratory frog, Xenopus laevis, has two actively transcribed PRNP genes that differ slightly in the repeat-like region as well at a few individual amino acids. Their sequences are given below. No sign of doppel can be found in Xenopus laevis cDNA (unsurprisingly since doppel transcription is rare); no genome project is underway. There may be two doppels in this species, depending on the relative timing of PRNP duplication and the tetraploidization event and selective pressure to maintain two copies.
The prion gene in teleost fish has radically diverged from its mammalian counterpart especially in the repeat region but remains recognizable via various conserved anchor features, residual synteny, and weak homology. Fugu has a second PRNP gene on a different chromosome (resulting from the whole genome duplication in Teleostei) plus an apparent novel tandem duplication that resembles PRNP rather than PRND. Coelocanth genome has been proposed but not begun -- that could further refine the timing of PRND duplication. As it stands, that event occurred after teleost fish divergence but before that of amphibians, about 400 million years ago. The prion gene clearly represents the ancestral form and presumably function, ie, a doppel-like ancestor did not duplicate to a second gene that become PRNP. No counterpart of PRNP can be located in the initial release of the chondrichthyian genome, Callorhynchus milii, but that will be finished to higher coverage in a few months.
Doppels are evolving noticeably faster than prions but have not become pseudogenes in any species investigated to date. (Note very recent pseudogenes that have not yet acquired internal stop codons or loss of deeply invariant residues are difficult to detect.) It must be remembered that PRNP's globular region lies within the most slowly evolving quartile of mammalian genes. As a representative example, human/dog proteins have 78% identity for PRND but 87% for PRNP. A reconstructed ancestral mammal sequence for PRND shows no sign whatsoever of converging to a PRNP-like sequence, percent identity ancester-to-ancestor remains in the mid-20's. Since this uses up 100 million years of the 400 available, doppel evolved more drastically at an earlier time, perhaps soon after the duplication event.
To further investigate the co-evolution of PRNP and PRND, it is imperative to first collect gene sequences from a phylogenetically representative sample of species. PRNP tends to be over-sampled within Artiodactylia, indeed Bovidae. Doppel remains very poorly represented at dbEST even within much-studied mammals and enriched libraries, even in testis, a tissue where it is transcribed. The most economical explanation of the data is that doppel has a narrow function with limited and specialized expression in uncommon cell types, yet one important enough for gene retention.
However a respectable number of tetrapod doppel sequences have accumulated. In addition to genome projects, van Rheede and coworkers sequenced nine doppels from important early diverging clades of placental mammals. PRND from the chimpanzee genome has special interest for evaluating known human doppel polymorphisms to determine "wildtype" human. Macaque doppel can also the 2 amino acid deletion seen in human at position 122-123, showing this event predated old world monkey divergence. In fact that event can be precisely timed to the stem lying between tarsier and new world monkey divergence and shown non-homplasic using various genome projects underway:
PRND_hsa ANQGEFQ--KPDNKLHQQVLWRLVQELCS Homo sapiens (human) PRND_ptr ANQGEFQ--KPDNKLHQQVLWRLVRELCS Pan troglodytes (chimp) PRND_ggo ANQGEFH--KPDNKLHQQVLWRLVRELCS Gorilla gorilla (gorilla) PRND_ppy ANQGEFQ--KPDNKLHQQVLWRLVQELCS Pongo pygmaeus (orang_sumatran) PRND_nle ANQGEFQ--KPDNKLHQRVLWRLVRELCS Nomascus leucogenys (gibbon) PRND_mml ENQGEFQ--KPDNKLHQRVLWRLVQELCS Macaca mulatta (rhesus) PRND_pha ANQGEFQ--KPDNKLHQRVLWRLVQELCS Papio hamadryas (baboon) PRND_cja ANQAEFQ--KPDNKLHQRVLWRLVQELCS Callithrix jacchus (marmoset_nwm) PRND_tsy ANAAERPREARDDPLHQRVLGRLVRELCS Tarsius syrichta (tarsier) PRND_mmr ANQAEFAREKQD-KLHERILWRLTRELCS Microcebus murinus (mouse_lemur) PRND_tbe ANQAEFSKEKQDNKLYQRVLWRLIKELCS Tupaia belangeri (tree_shrew) PRND_ocu ANQGEFSREKQDNKLHQRVLWRLIKELCS Oryctolagus cuniculus (rabbit) PRND_opr ANQGEFSREKQ-NKLHQRVLWRLIKELCS Ochotona princeps (pika) PRND_dor ANQAEFAREMQD-KFYQRVLWRLTKELCA Dipodomys ordii (kangaroo_rat) PRND_str ANQAEFSREKQDNKLHQRVLWRLIKELCS Spermophilus tridecemlineatus (ground_squirrel) PRND_rno ANQAEFSREKQDSKLHQRVLWRLIKEICS Rattus norvegicus (rat) PRND_mmu ANQAEFSREKQDSKLHQRVLWRLIKEICS Mus musculus (mouse) PRND_cpo ANQAEFSREKQDNKLHQRILWRLIKELCS Cavia porcellus (guinea_pig) PRND_sar ANQEELSREKHD-KLYQRVLWRLVRELCS Sorex araneus (shrew) PRND_eeu ANQEELSREKHD-KLYQRVLWRLVRELCS Erinaceus europaeus (hedgehog) PRND_cfa ANQEELSREKQDNKLHQRVLWRLIRELCS Canis familiaris (dog) PRND_fca ANQEELSREKQDDKLYQRVLWRLNR-ECS Felis catus (cat) PRND_tte ENQEELSREKQDDKLHQRILWRLIRELCS Tapirus terrestris (tapir) PRND_eca ANQEELSQEKQDDKLYQRILWRLISELCS Equus caballus (horse) PRND_mlu ANQEELSQERPDNRLHRRILWRLVRELCS Myotis lucifugus (microbat) PRND_csp VNQEELSQEKQDKLLHQRILWQLIRELCS Cynopterus sphinx (bat) PRND_oar ANQEELSREKQDNKLYQRVLWQLIRELCS Ovis aries (sheep) PRND_chi ANQEELSREKQDNKLYQRVLWQLIRELCS Capra hircus (goat) PRND_bta ANQEELSREKQDNKLYQRVLWQLIRELCS Bos taurus (cow) PRND_ttr VNQEELSREKQDNSLYQRVLWQLIRELCS Tursiops truncatus (dolphin) PRND_ssc ANQEE-SHEKPDNKLYQRVLWRLIRELCS Sus scrofa (pig) PRND_pcw VNQEELSLEKPDNKLYQRVLWRLIRELCS Physeter catodon (whale) PRND_ban ANQEEFSREKQDNKLHQRVLWRLIRELCS Boreoeuthere ancestralis (boreoeuthere) PRND_dno ANQAELAHERQD-TLHGRVLGRLIRELCA Dasypus novemcinctus (armadillo) PRND_cho ANQAEFSREKHD-KLHQRVLWRLIRELCS Choloepus hoffmanni (sloth) PRND_pcp VNQEEFSREKQDNKLYQRILWRLIRELCS Procavia capensis (hyrax) PRND_ete ANQAEFSAPQQDSRLHQRVLWRLIRELCS Echinops telfairi (tenrec) PRND_ema ANQEEFSREKQDNKVYQRILWRLIRELCS Elephas maximus (elephant) PRND_laf ANQEEFSR-KQDNKVYQRILWRLIRELCS Loxodonta africana (elephant) PRND_tma ANQEEFSREKQDNKLYQRILWRLIRELCS Trichechus manatus (manatee) PRND_mdo INKLEPLEEQNISDIYSRILEQLIKELCA Monodelphis domestica (opossum) PRND_meu VNNLETLEEKNASDIHSRVLEQLIKELCA Macropus eugenii (wallaby) PRND_oan ANRGELTAGGNASDVHVRVLLRLVEELCA Ornithorhynchus anatinus (platypus) PRND_aca SNKLNLSKGKDLSNTKERVMWVLIHHLCA Anolis carolinensis (lizard) PRND_xtr RNKVWISQLEDDEEGDIYMSVATQVLQFLCM Xenopus tropicalis (frog) ** * . * *. ::*::**:* :* .:
Below 45 PRND doppel sequences from land vertebrates are provided. Most are complete and reliable, but others are fragmentary and no better than the ongoing genome project from which they were extracted (initially low coverage, perhaps a single applicable trace). The phylogenetic distribution is approximately half as extensive as for PRNP. Almost all species having an available PRND would also have an available PRNP. It would be very easy to extend PRND coverage since primer design for PCR presents no issues. All sequences consist of a single coding intron. The only rare genomic event for PRND of any phylogenetic depth is the indel shown above.
11 primates (Euarchonta) 7 glires (rodents and rabbits) 14 laurasiatheres 1 ancestral boreoeuthere 2 xenarthrans 5 aftrotheres 2 marsupial 1 platypus 0 bird 1 lizard 1 amphibian
>PRND_hsa human full length MRKHLSWWWLATVCMLLFSHLSAVQTRGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGRKLDIDFGAEGNRYY EANYWQFPDGIHYNGCSEANVTKEAFVTGCINATQAANQGEFQKPDNKLHQQVLWRLVQELCSLKHCEFWLERGAGLRVTMHQPVLLCLLALIWLTVK* >PRND_ptr Pan chimpanzee full length MRKHLSWWWLATVCMLLFSHLSAVQARGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGRKLDIDFGAEGNRYY EANYWQFPDGIHYNGCSEANVTKEVFVTGCIHATQAANQGEF QKPDNKLHQQVLWRLVRELCSLKHCEFWLERGAGLRVTMHQPVLLCLLAFIWLMVK* >PRND_ggo gorilla MRKHLSWWWLATVCMLFFSHLSAVQARGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGRKLDIDFGAEGNRYY EANYWQFPDGIHYNGCSEANVTKEVFVTGCINATQAANQGEF HKPDNKLHQQVLWRLVRELCSLKHCEWLERSAGLRVTMHQPVLLCLLAFIWLMMK* >PRND_ppy Pongo pygmaeus orangutan shares 2 bp deletion unique to primates. MKNHLSWWLATVCMLLFSHLSAVQARGIKHRIKWNRKALPSTAQITEAPGAENRPGALSkQGR QLDIDFGTEGNRYYEANYWQFPDGIHYDGCSEANVTKEVFVTGCINATQAANQGEFQ KPDNKLHQQVLWRLVQELCSLKHCEFWLERGAGLRVTMHQPVLLCLLAFIWLMVK* >PRND_nle Nomascus leucogenys gibbon MRKHLSWWWLATVCMLLFSHLSAVQARGIKHRIKWNRKALPSTAQITEAQVAENRPGGFIKQGRKLDIDFGAEGNRYY EANYWQFPDGIHYDGCSEANVTKEVFV TGCINATQAANQGEFQKPDNKLHQRVLWRLVRELCSLKRCEFWLERGAGLRVTMHQPVLLCLLAFIWLMVK* >PRND_pha Papio hamadryas (baboon) WLSRLHAAPQ HLSLVVQARGIKHRIKWNRKALPSTAQITEAQVAENPPGSFIKQGRKLNIDFGAEGNRYY EANYWQFPDGIHYDGCSEANVTKEVFVTGC INATQAANQGEFQKPDNKLHQRVLWRLVQELCSLKRCEFWLEGGAGLRVTMHQPVLLCLPAFVWLMVK* >PRND_mml Macaca mulata full length from trace archives MRQHLSRWWLATVCMLLLSHLSVVQARGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGR KLNIDFGAEGNRYYEANYWQFPDGIHYDGCSEANVTKEVFVTGCINATQAENQGEFQK PDNKLHQRVLWRLVQELCSLKRCEFWLERGAGLRVTMHQPVLLCLPAFVWLMV* >PRND_cja Callithrix jacchus 1st new world monkey 89% MRKHLSGWWLATVCMLLFSHLSAVQARGIKHRIKWNRKALPSAAQITEAQVAENRPGTFIKQGRKLDINFGAEGNRYY EANYWQLPDGIHYDGCSETNVTKEVFVTGCINATQAANQAEFQKPDNKLHQRVLWRLVQELCSLKRCEFWLERGAGFRVATHQPLLLCLLAFIWLMAK* >PRND_tsy Tarsius syrichta tarsier MRKPLGGWRLAVVCVLLLGLLSAARARGIKHRFKWNRKASPSAARVTEARVAESRPGAFIRRGRKLDIDFGAEGNKYY EANYWQFPDGIHYDGCSKANVTKELLVAGCINATHAANAAERPREARDDPLHQRVLGRLVRELCSAKHCDFWPERAAAPGTARARPGALLLVSRL >PRND_mmr Microcebus murinus GNRYYEANYWQFPDGIHYDGCSDANVTKEVFVASCINATVAANQAEFAREKQDKLHERILWRLTRELCSVKRCEFWLERGAGLRVAEDCPTILSLLLLLWLLLR* >PRND_tbe Tupaia belangeri tree shrew 6.7 m tr frag RALPSTAHITEARVAENRPGAFIRQGRKLDIDFGVEGNRYYEANYWQFPDGIHYDGCSEVNVTKEMFITSCINATQA ANQAEFSKEKQDNKLYQRVLWRLIKELCSIKHCDFWLERGAGLRVTMHLPVMLCLLVFVWFVVK* >PRND_mmu Mus musculus mouse full length MKNRLGTWWVAILCMLLASHLSTVKARGIKHRFKWNRKVLPSSGGQITEARVAENRPGAF IKQGRKLDIDFGAEGNRYYAANYWQFPDGIYYEGCSEANVTKEMLVTSCVNATQAANQAE FSREKQDSKLHQRVLWRLIKEICSAKHCDFWLERGAALRVAVDQPAMVCLLGFVWFIVK* >PRND_rno Rattus norvegicus rat full length MKNRVGTWGLAILCLLLASHLSTVKARGIKHRFKWNRKVLPSSGQITEAQV AENRPGAFIKQGRKLDIDFGAEGNKYYAANYWQFPDGIYYEGCSEANVTKEVLVTRCVNA TQAANQAEFSREKQDSKLHQRVLWRLIKEICSTKHCDFWLERGAALRITVDQQAMVCLLGFIWFIVK* >PRND_cpo Cavia porcellus (guinea pig) fragment AY130773 N-extended at traces 7,499,469 seq MKTSLCVWALVCVLLQCHFSSVAARGIKHRIRWGRKPTPSPSQVTEARVAMTRPGAFIKEGHKLNIDFGAEGNRYYETNYWQFPDGIHYNGCSDT NVTKEVLVTSCINATQAANQAEFSREKQDNKLHQRILWRLIKELCSA >PRND_dor Dipodomys ordii pseudogene ITEARYRENAQGPSSIKP--QADIDF--ERAQ*YEA*YWQFADGINYEGCSRRHVTKQMF VSRCINVTQAANQAEFAREMQD-KFYQRVLWRLTKELCAVKQCDFWLERGEGCPVAIVNR PAMLGLLLCMWFIL >PRND_str Spermophilus tridecemlineatus ground squirrel complete tr MKKHLGTWGLAVVCVLLSTHLSAIKARGIKHRIKWNRKSVPSTVQITEAQVAQNPPGAF IKQGRKLHIDFGAEGNKYYEANYWQFPDGIYYDGCSEANVTKEVFIAKCINATQAANQAE FSREKQDNKLHQRVLWRLIKELCSVKHCDFWLEGGAGFQLSVDQPVMLCLLVFIWLMVK* >PRND_ocu Oryctolagus cuniculus rabbit revised complete from traces 8,968,713 sequences 75% MRKHLGAWGLAIVCVLLFSHLPPAKARGIKHRIKWNRKALPSTAQITEAHVAENRPGTFI RQGRKLNIDFGPEGNKYYEANYWQFPDGVHYDGCSEGNVTKEAFVAKCVNATQAANQGE FSREKQDNKLHQRVLWRLIKELCSIKHCDFWLERGAGVQVGGEQPLVLGLLLCTWLLVK* >PRND_opr Ochotona princeps pika complete MRKHLGGWGLAIVCVLLFSLLPTVKARGIKHRIKWNRKALPSTAQITEARVAENRPGTFIRQGQKLSIDFGPEGNKYY EANYWQFPDGIHYDGCSEGNVTKEVFVAKCINATQAANQGEFSREKQNKLHQRVLWRLIKELCSIKHCDFWLERGAGFPVTVGQPMVVLCLLIFTWVLVK* >PRND_cfa Canis familiaris dog full length MRKHLGGCWLAIVCVLLLSQLSAVEARGIKHRIKWNRKALPGTSQVTEARSAEIRPGAFI RQGRKLDIDLGPEGNRYYEANYWQFPDGIHYNGCSEANVTKEKFVTGCINATQVANQEEL SREKQDNKLHQRVLWRLIRELCSVKRCDFWLERGAGPRVAGAQPVLLCLLAFIWFIVK* >PRND_fca Felis catus cat improved fragment 8,248,053 traces now 9.2 MRKHLGGCWLAIVCVLLFSQLSAVKARGIKHRIKWNRKTLPSISQVTEAHTAEIRPGAFIRQGRKLDIDLG AEGNRYYEANYWQFPDGIHYNGCSEANVTKEKFVTSCINATQVANQEELSREKQDhKLYQRVLWRLNREALLWSAHGNFGRERG >PRND_eca Equus caballus perissodactyl MRKHLGGCCLAIVCVLLFSQLPVVLSRGTKHRIKWNRKALPSTAKVTEARVEEIRPGAF IRQGRKLNINFGAEGNRYYEANYWQFPDEIHYNGCSEANVTKEKFVISCINATQEANQEE LSQEKQDDKLYQRILWRLISELCSVKHCDFGLESGTGLRVTMDQPVLLCLLVFIWFIVK* >PRND_tte Tapirus terrestris (Brazilian tapir) perissodactyl fragment KALPSTSKVTEAHTAEIRPGAFIRQGRKLNIDFGAEGNRYYEANYWQFPDEIHYNGCSEA NVTKEKFVISCINATQAENQEELSREKQDDKLHQRILWRLIRELCSV >PRND_mlu Myotis lucifugus traces ti|983665423 complete MRKQLGGCCLAIVCVLLFSQLAAVQARGIKHRIKWNRKGAAPPSSSQVTEAQRVEMQLRP GAFIKHGRKLDIDFGAEANRYYEANYWQFPDEIHYNGCSSEANVTREKFVSGCINATQAA NQEELSQERPDNRLHRRILWRLVRELCSVKHCDFWLENGAGLWVTVHRPVMPCLLVSIWFIVK* >PRND_pva Pteropus vampyrus frameshifty frag MRRQLGGCWLAIVCVLLFSQLSTVKARGIKHRTKWNR PCDRVS VTESQ GAFIKQGRK >PRND_csp Cynopterus sphinx bat Laurasiatheria; Chiroptera fragment KTLPSPSSHVTESQTAEMRPGAFVKQGRKLNIDFGDEGNRYYEAHYWEFPDGIYYDACSKANVTKEK FVTSCINATQAVNQEELSQEKQDKLLHQRILWQLIRELCSV >PRND_bta Bos taurus cow full length MRKHLGGCWLAIVCILLFSQLCSVKARGIKHRIKWNRKVLPSTSQVTEARTAEIRPGAFI KQGRKLDIDFGVEGNRYYEANYWQFPDGIHYNGCSKANVTKEKFITSCINATQAANQEEL SREKQDNKLYQRVLWQLIRELCSTKHCDFWLERGAGLRVTLDQPMMLCLLVFIWFIVK* >PRND_oar Ovis aries sheep full length MRKHLGGCWLAIVCVLLFSQLSSVKARGIKHRIKWNRKVLPSTSQVTEAHTAEIRPGAFI KQGRKLDINFGVEGNRYYEANYWQFPDGIHYNGCSEANVTKEKFVTSCINATQVANQEEL SREKQDNKLYQRVLWQLIRELCSIKHCDFWLERGAGLQVTLDQPMMLCLLVFIWFIVK* >PRND_chi Capra hircus (goat) MRKHLGGCWLAIVCVLLFSQLSSVKARGIKHRIKWNRKVLPSTSQVTEAHTAEIRPGAFIKQGRKLDINFGV EGNRYYEANYWQFPDGIHYNGCSEANVTKEKFVTSCINATQVANQEELSREKQDNKLYQRVLWQLIREL CSIKHCDFWLERGAGLQVTLDQPMMLCLLVFIWFIVK* >PRND_ama Antidorcas marsupialis (springbok) Bovidae; Antilopinae MRKHLGGCWLAIACILLFSQLSSVKARGIKHRIKWNRKVLPSTS QVTEAHTAEIRPGAFIKQGRKLDIDFGVEGNRYYEANYWQFPDGIHYNGCSEANVTKE KFVTSCINATQVANQEELSREKQDNKLYQRVLWQLIRELCSIKHCDFWLERGAGLRVT LDQPMMLCLLVFIWFIVK* >PRND_ttr Tursiops truncatus dolphin 1 trace ti|1435196145 MRKHLGGCWLAIVCVLLFSQLSSVKARGIKHRIKWNRKALPSTSQVTEAHTAEIRPGA FIRQGRKLDINFGAEGNRYYEANYWQLPDGIHYNGCSEANVTKEKFVTSCINATQAVNQ EELSREKQDNSLYQRVLWQLIRELCSNKQCDFWLERGAGLRVTLDQPMMLCLLVFIWFIVK* >PRND_pcw Physeter catodon sperm whale middle fragment KALPSTSQVTEAHTAEIVPGAFIKQGRKLDIDFGAEGNRYYEANYWQFPDGIHYNGCSEA SVTKEKFVTSCINATQEVNQEELSLEKPDNKLYQRVLWRLIRELCSI >PRND_ssc Sus scrofa pig full length ti|470951185 MRKHLGGRRWAIVCILLFSQLSEVKARGIKHRIKWNRKALPSTSQVTEAHTAEMRPGAFI KQGRKLDIDFGAEGNRYYEANYWRFPDGIHYNGCSEVNVTKEKFVTSCINTTQAANQEE SHEKPDNKLYQRVLWRLIRELCSIKHCDFWLERGAGLRVTMDQPMMLCLLVFIwfivk* >PRND_sar Sorex araneus shrew Laurasiatheria; Insectivora 7.23M tr MRKHLGWCLAIACVLLLCQVPAAQARGIKHRIKWGRKAPPSTPQVTEARVAEIRPGAFI RQGRKLNLNLGGEDKRYYDAYYWQFPDGIHYNGCSSANVTREKFISGCINATRAANQ EELSREKHDKLYQRVLWRLVRELCSLKRCDFWSERGAGLQVTVDQLMMFCLLAFTWFIMK* >PRND_eeu Erinaceus europaeus 10,952,642 seq complete MRKHLGGWWLAIVCVLFFSQLSAVKARGIKHRFKWNRKALPSTNHVTEAQVSEIRPGAFI RQGTKLDIDLGAEANRYYEANYWQFPDGIHYNGCSEVNVTKAKFIASCINATHSANQ EELSREKHDKLYQRVLWRLVRELCSLKRCDFWSERGAGLQVTVDQLMMFCLLAFTWFIMK* >PRND_ban Boreoeuthere ancestralis MRKHLGAWWLAIVCILLFSHLSTVKARGIKHRIKWNRKALPSTAQVTEAHVAEIRPGAFI RQGRKLDIDFGAEGNRYYEANYWQFPDGIHYNGCSEANVTKEMFVTSCINATQAANQEEF SREKQDNKLHQRVLWRLIRELCSIKHCDFWLERGAGLRVTLDQPVMLCLLVFIWFMVK* >PRND_dno Dasypus novemcinctus pseudo frag ANYWQLPDGILYDGCAEANVTKEALVAGCVNGHTAANQAELAHERQDTLHGRVLGRLIRELCALKRCKFWPDR >PRND_dno Dasypus novemcinctus MRKHLGGWRLAIVCVLLSGHLSMVKARGIKHRIKWNRKAAPGAAQVTEARVAEQRPGAFV RQGRRLDIDFGAEGNRYYEANYWQLPDGILYDGCAEANVTKEALVAGCVNATQLANQAEL AHEGQDTLHRRVLGRLIRELCALKRCKFWPDRAAGPRLVRGAPVFGGLLLLIWLLVR* >PRND_cho Choloepus hoffmanni sloth single trace old dasypus pseudogene, ti|563245674 MRKHLGGWWLAAVFVLLVCHLSVAKARGIKHRIKWNRKALPSAAQVTEARIAESRPGAFI KQGRKLDIDFGAEGNKYYEANYWQFPDGIHYDGCSEANVTKEVFVTGCINATQAANQAEF SREKHDKLHQRVLWRLIRELCSVKHCDFWLERGGGLRLTVDQPVVSACWFHLAYRE* >PRND_laf Loxodonta africana African elephant Afrotheria 176 aa revised/corrected MRKHLGAWWLAIAFVLLLSHLSMVTARGIKHRIKWNRKALPNTGHVTAAQVTETRPGAFI RHGRKLDIDFGAEGNRYYEANYWQFPDGIHYDGCSEANVTKEMFVTSCINTTQAANQEEF SRKQDNKVYQRILWRLIRELCSVKHCDFWLDRGGGLRVSLDQPVMLCLLVFIWFMVK* >PRND_ema Elephas maximus Asiatic elephant Afrotheria fragment KALPNTGHVTAAQVTETRPGAFIRHGRKLDIDFGAEGNRYYEANYWQFPDGIHYDGCSEA NVTKEMFVTSCINTTQAANQEEFSREKQDNKVYQRILWRLIRELCSV >PRND_pca Procavia capensis (cape rock hyrax) Afrotheria fragment AY130772 ti|1293358170 KPVTNPAHMTAAQVSDRRLGTFIRHGRKLDIDFGAEGNRYYEANYWLFPDGIHYDGCSDT NVTKELFVTNCINTTQAVNQEEFSREKQDNKLYQRILWRLIRELCSllglDFWPERVGGLffSLDQPVMLCLLVFIWFMLK* >PRND_ete Echinops telfairi Madagascar lesser tenrec Afrotheria 10,323,158 seq MRKHLGAGWLALACVLLFGHLSVVPARGIKHRIKWNRKTLPSTAHVTEARVSVTRPGAFV RHGQKLDVDLGADGNRYYEAHYWQFPDGIHYDGCSDANVTREMLVTRCINATQAANQAEF SAPPRDQQDSRLHQRVLWRLIRELCSAKRCDFWLEGAGASRAGLDQPPVLLGLLVLLGLTVK* >PRND_tma Trichechus manatus (Caribbean manatee) Afrotheria fragment KPLPNTPHVTAAQVSDARPGAFIRHGRKLDIDFGAEGNRYYEANYWQFPDGIHFDGCSEA NVTKEMFVTSCINTTQAANQEEFSREKQDNKLYQRILWRLIRELCSV >PRND_mdo Monodelphis domestica doppel genomic revised +rassf2 -prnd -prnp MRRHLGICWIAIFFALLFSDLSLVKAKTTRQRNKSNRKGLQTNRTNPTTVQPSEKLQGTF IRNGRKLVIDFGEEGNSYYATHYSLFPDEIHYAGCAESNVTKEVFISNCVNATRVINKLE PLEEQNISDIYSRILEQLIKELCALNYCEFRTGKGTGLRLSLDQYVMVYLVILTCLIVK* >PRND_meu Macropus eugenii wallaby MRRHLGTWWTAIFFALLFSDLSLVKAKGTRQRNKSNRKSLQTNRVNPTTAQPSEILQGAF IRQGRKLSIDFGEEGNSYYETHYQLFPDEIHYVGCTESNVTKDIFISNCMNATHAVNNLE TLEEKNASDIHSRVLEQLIKELCALKYCELETETGAGLKLSLDQSVMVYLVILTCLIVK* >PRND_oan Ornithorhynchus anatinus platypus 42% to opposum 187 aa 4 cys in register MMTVRRRRRSGGARWLLVFLVLLSGDLSSLQARGPRPRNKAGRKPPPSNAGPDSPAPRPPAGARGTFIRRGGRLSVDFGPEGNGYY QANYPLLPDAIVYPDCPTANGTREAFFGDCVNATHEANRGELTAGGNASDVHVRVLLRLVEELCALRDCGPALPTGPAPRPGPPGPPAALALLTLVLLGAQ* >PRND_aca Anolis carolinensis weak but real! scaffold_1221:78,884-117,121 syntenic, oriented like PRNP but no larger MMQRPLVVAILLTALWSEVCLCRRVSGSANRRNKKTSTTTSAPKLQSSTTATTFQGNLCRGGQMI DNMDLEPNDKVYYKANLKIFPDGLYYPNCSLLLQPNTTKEELVGECVNFTIASNKLNLSK GKDLSNTKERVMWVLIHHLCANESCGQPCPLLQNSGNLHYIGQVLTVFVGLIGCSFLSAK* >PRND_xtr Xenopus tropicalis frog 182 aa single exon 2 cDNAs odd unbalanced cysteines syntenic turtle-prnp like, no laevis MGRQNLFSCLILLLLILYCSLSSPRRAASSKKISKTTDLSRGAKRRPKVTNSPALGDLSFRGRALNVNFNLTEESELYTANLYSFPDGLYYPR PAHLSGAGGTDEFISGCLNTTIERNKVWISQLEDDEEGDIYMSVATQVLQFLCMENYVKPTNGAVTCTGGLWVFIGVMHFFFLFRKGD*
>PRND_aca Anolis carolinensis dna sequence atgatgcagagacctctggtagtagccatccttttgacagccctatggagcgaggtctgtctctgtcggcgagtgagcgg atctgcaaataggcggaataagaagacttccaccaccacaagtgctcccaaacttcaaagctcaaccacagccacaacct tccaaggaaatctttgtcgtggtggtcaaatgattgacaatatggacctcgagccaaatgacaaagtctattacaaggca aacctgaagattttcccagatggactttattatcccaactgttccttgcttctgcagcccaacacgaccaaagaagagct cgttggtgaatgcgtcaatttcaccattgcatcaaataagttgaacctatctaaaggcaaggatttgagcaacacaaagg agagggtgatgtgggtcttgattcatcacttgtgtgcaaatgagtcgtgcggtcagccttgccctttgctccaaaactct ggaaatctccactatattggccaagtactcactgtatttgttggcctaattggttgctcttttctttctgcaaaataa